Conference on Innovative Data
Systems Research (CIDR)

2019 Asilomar, California

Automated Performance Management

for the Big Data Stack

Shivnath Babu et al
Unravel Data

http://cidrdb.org/cidr2019/index.html

Automated Performance
Management for the Big Data Stack

Anastasios Arvanitis, Shivnath Babu, Eric Chu,
Adrian Popescu, Alkis Simitsis, Kevin Wilkinson

@ unravel

Modern applications are being built on a
collection of distributed systems

DATA SOURCES

RDBMS |

Social
Sensor
Machine
ERP

Mobile I

2/6/19

DATA COLLECTION REAL-TIME/BATCH PROCESS SRR 1S
~ N (o
Messaging
Stream Processing /_-g?
OQ(:X)O SpOf? cassandra % kafka
} .
Streaming | | Result Store
I v~ Raw Data Computed Data | | N '
| ’ =ASE : IMPALA
- S kafka ook’ o =
s 5 SOL Query Engine
L TAS 0 J

. J

Modern Distributed Stack

DATA CONSUMER

' ~
|
|
|
|
|
|

Reports
ML Apps
loT Apps
Analytics
BI

Alerts

N

\ Services

But:
Running distributed applications
reliably & efficiently is hard

My app failed

0" .
* *
“
*

~E L

/ N 1|
l / | DATA SCIENTIST

2/6/19

My data pipeline is missing SLA

| - e®y
@ ED

DATA PIPELINE OWNER

2/6/19

Our cloud costs are out of control

Hii
S2
Hiii

OPERATIONS TEAMS

There are many challenges

g B e

— BAD SIZES
JOINS FILE
</> FORMATS
: C 1
CONFIG ‘_——ID
SETTINGS
]

MACHINE
DEGREDATION

BUGS EI E/ @
4’7 @ SCHEDULER

DATA SETTINGS

LAYOUT NETWORK
SETTINGS

2/6/19

What enterprises are facing: Monitoring Data
is Silo'ed

* Asurvey of 6000+ enterprise IT professionals from
Australia, Canada, France, Germany, UK, & USA

— 91% are struggling with silo'ed monitoring data

2/6/19 Published: https://blog.appdynamics.com/aiops/aiops-platforms-transform-performance-monitoring/

What enterprises are facing: Reactive Approach

How enterprise IT teams discover
performance problems:

997 58%

find out from users find out from an executive find out from

calling or emailing or non-1T team member users posting on

their organization's at their company who social networks
help desk alerts the IT department

2/6/19 Published: https://blog.appdynamics.com/aiops/aiops-platforms-transform-performance-monitoring/

What enterprises are facing: High MTTR

Average cost of a single
service outage in the

United States

2/6/19 Published: https://blog.appdynamics.com/aiops/aiops-platforms-transform-performance-monitoring/

We can solve this problem
as a Data and Al/ML problem

First: Bring all monitoring data to a single platform

Resource
Manager API

History Server

API

Container
Metrics

Data
Statistics

SQL Query
Plans
Logs

Metadata

Configuration

One complete correlated view.

2/6/19

Then: Apply algorithms to analyze the data &
(whenever possible) take actions automatically

Resource
Manager API
History Server Gorms
API :
Container

Metrics

Data
Statistics

SQL Query
Plans
Logs

Metadata

Configuration

E—

One complete correlated view. Built-in intelligence & automation.

2/6/19

Building this platform requires innovation

* |n data collection & transport
— Non-intrusive, low overhead, transient/elastic clusters

* |n data storage
— Variety, scale, asynchronous arrival

2/6/19

Building this platform requires innovation

In data collection & transport

— Non-intrusive, low overhead, transient/elastic clusters
In data storage

— Variety, scale, asynchronous arrival

* |n algorithms to provide insights

— Real-time, combine expert knowledge with ML

* In algorithms to take actions
— Reliable, predictable

Example problems for which our solutions are
running in production enterprise environments

Application autotuning

 Failures of distributed applications

* SLA management for streaming data pipelines
* Holistic cluster optimization

2/6/19

spark.driver.cores 2

spark.executor.cores 10

spark.sql.shuffle.partitions 300

spark.sqgl.autoBroadcastJoinThres 20MB
hold

100

SKEW('orders', 'o_custid’) true
spark.catalog.cacheTable(“orders™) true

PERFORMANCE

Today, tuning is often by trial-and-error

2/6/19 19

A new world

7N INPUTS
q@p 1. App = Spark Query
N

2. Goal = Speedup

“I need to make this app faster”

2/6/19

A new world

In blink of an eye, user As user finishes User comes back from
gets recommendations to checking email, she lunch. A verified run that
make the app 30% faster has a verified run is 90% faster

that is 60% faster

2/6/19

Reward

Take Environment
action

parameter 6

Observe state 0 o
Reinforcement Learning Response Surface Methodology

Tuning Database Configuration Parameters with iTuned Xplus: A SQL-Tuning-Aware Query Optimizer

Songyun Duan, Vamsidhar Thummala, Shivnath Babu* Herodotos Herodotou and Shivnath Babu*
Department of Computer Science Department of Computer Science
Duke University Duke University
Durham, North Carolina, USA {hero,shivnath}@cs.duke.edu

{syduan,vamsi,shivnath}@cs.duke.edu

ABSTRACT Amy recalls that the database has configuration parameters. For ABSTRACT Ste? into l'ead the optimizer towards a good plan [6]. 'This process
lack of better understanding, she had set them to default values The need to improve a suboptimal execution plan picked by the Pf 1mproving ﬂ'{e performance of a .“problegl query” is referred ‘_0
during installation. The parameters may need tuning, so Amy pulls query optimizer for a repeatedly run SQL query arises routinely. m'ﬂ.]e d?mbase mt?usn'y as SOL tuning. Tuning a problem query is
out the 1000+ page database tuning manual. She finds many dozens Complex expressions, skewed or correlated data, and changing con- critical in two settings:

Database systems have a large number of configuration parame-
ters that control memory distribution, I/O optimization, costing of
plans, parallelism, many aspects of logging, recovery, and

2/6/19

Autotuning workflow

'@' App,Goal
YW1 T 11 ™ ProbeAlgorithm
jyEe

I H
Xnext 1

2/6/19

Autotuning workflow

Recommendation

_ Monitoring
‘@’ Algorithm Data
S — :
\ \ ||: ‘ Probe Algorithm Historic Data
p Tl <
Probe Data
Orchestrator

Cluster Services On-premises and Cloud

2/6/19

Example problems for which solutions are
running in production enterprise environments

* Application autotuning

* Failures of distributed applications

* SLA management for streaming data pipelines
* Holistic cluster optimization

2/6/19

Manual Root Cause Analysis of App Failures

2B A3y e EAGLN L AU S AL GH CATLUA | SHGE R AT 308 G . Ay
:.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56
:.spark.sql.execution.SparkPlanssanonfunsexecutes5.apply(SparkPlan.scala:132
:.spark.sql.execution.SparkPlanssanonfunsexecutess.apply(SparkPlan.scala:130)
spark.rdd.RDDOperationScopes.withScope(RDDOperationScope.scala:150)
spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
spark.sql.execution.Exchange.prepareShuffleDependency(Exchange.scala:164) 5 levels Of StaCk
spark.sql.execution.Exchange$Sanonfun$doExecute$l.apply(Exchange.scala:254) i
spark.sql.execution.Exchange$sanonfunsdoExecute$l.apply(Exchange.scala:248) traces Of thls form
s.spark.sql.catalyst.errors.packages.attachTree(package.scala:48

sql.catalyst.errors.packagesTreeNodeException: execute, tre

(key=[nation#71,0_year#72], functions=[(sum(amount#73),mode=Partial,isDistinct=false)], output=[nation#71,o0_year#72,sum#78])
@50 AS nation#71,year(cast(o_orderdate#20 as date)) AS o_year#72,((_extendedprice#5 = (1.8 - |_discount#6)) - (ps_supplycost#28 = |_gquantity#d)) AS

in lo_orderkey#16L], [l orderkey#oL
srderkey#16L ASC], false, @
tenExchange hashpartitioning(o_orderkey#16L,200), None
rject [o_orderkey#16L,0_orderdate#2@]
Scan ExistingROD[o_orderkey#16L,0_custkey#17L,0_orderstatus#18,o_totalprice#19,0_orderdate#2@,0_orderpriority#21,0_clerk#22,0_shippriority#23L,o_comn
srderkey#@L ASC], false, @
tenExchange hashpartitioning(l_orderkey#9L,20@8), None
sject [1_extendedprice#5,1_discount#6,l_quantity#4,1_orderkey#8L,n_name#5@,ps_supplycost#28)
SortMergeloin [p_partkey#38L), [1_partkey#1L]
i= Sort [p_partkey#38L ASC], false, @
+- TungstenExchange hashpartitioning(p_partkey#3eL,20@), None
+- Project [p_partkey#3@L
+- Filter Contains(p_name#31, ghost)

+= Scan ExistingRDD[p_partkey#30L,p_name#31,p_mfgr#32,p_brand#33,p_type#34,p_size#35L,p_container#36,p_retailprice#37,p_comment#38)

+= Sort [1_partkey#1L ASC], false, @
+- TungstenExchange hashpartitioning(l_partkey#1L,200), None
+- Project [_extendedprice#5,1_discount#6,1_quantity#4,_partkey#1L,1_orderkey#0L,n_name#50,ps_supplycost#28]
+- SortMergeloin [ps_suppkey#26L,ps_partkey#25L], [l_suppkey#2L,1l_partkey#1L]
i- Sort [ps_suppkey®26L ASC,ps_partkey#25L ASC], false, @
i += TungstenExchange hashpartitionina(ps suppkey#26L,ps partkey#25L,200), None

« Many levels of correlated stack traces
 Identifying the root cause is hard and time consuming

2/6/19

Automated Root Cause Analysis of Failures

Events Panel

/ SPARK SQL QUERY FAILED

/ Root cause:

| I Cannot run SparkSQL on non existing data. “sales” table of
] “tpcds” database does not exist on HDFS at location: “hdfs://
| master.unravel-lab:8020/tmp/tpcds-1tb/sales”

\ Recommendation:

\
\ Correct the input path location above and resubmit

 Reduce troubleshooting time from days to seconds
« Improve productivity of data scientists and analysts

2/6/19

Automated Root Cause Analysis of Failures

| Feature
. Error vectors
Co[galner Template —> >
gs .
Extraction

Learning
Algorithm
for

Predictive

I | Model

, [| | | [| [| | | []

Ayl \

1
I i i > I

v Root
I causes |
\ [| | | [| [| | | [| —_—

Predictive
Model

2/6/19

Two Ways to get Root-Cause Labels

* Manual diagnosis by a domain expert
« Automatic injection of the root cause

 Invalid input No space left on device
 Invalid memory configuration Transformations inside other
« OOME: Java heap space transformations

« OOME: GC overhead limit Runtime error

« Container killed by YARN Arithmetic error

* Runtime incompatibility Invalid configuration settings

2/6/19

Large-scale Lab Framework for Automatic
Root Cause Analysis

Environment:
« Lab created on demand on cloud or on-premises
« Workloads are run and failures are injected

Multi-tenant Workloads:
« Variety of workloads: Batch, ML, SQL, Streaming, etc.

Failures:
« Large set of root causes learned from customers &
partners. Constantly updated
« Continuously inject these root causes to train & test
models for root-cause prediction
2/6/19

Example problems for which solutions are
running in production enterprise environments

* Application autotuning

 Failures of distributed applications

* SLA management for streaming data pipelines
* Holistic cluster optimization

2/6/19

Predicting when SLAs are in danger of being missed

PARK-STREAMING Jpark
5 ers.hdfs
SUCCESS E default (@ 0Z/28/18 04:40:42 g 02/28/18 04:45:52

Stream = Execution Errors Logs Conf |Z|

B METRIC TotalDeIayv

40k 2m 43s

1m 40s .
- Latency SLAIis
Wed 04:42 3 minutes
Total Delay 1m

Wed 04:43 Wed 04:43 Wed 04:43 Wed 04:44 Wed 04:44 Wed 04:

12/28/2018 02/24@E018

Click and drag to select Batches
Latency SLA can be

missed by this time
2/6/19 2

Current time s here

Forecasting & Anomaly Detection are very
useful to manage streaming data pipelines

2/6/19

Example problems for which solutions are
running in production enterprise environments

* Application autotuning

 Failures of distributed applications

* SLA management for real-time data pipelines
* Holistic cluster optimization

2/6/19

Holistic Cluster Optimization

902

JOBS/DAY

JOBS/DAY

2x throughput increase and 2x reduction in cost!

2/6/19

Holistic Cluster Optimization

Applications " VCore Usage % Memory Usage «

Select Some Options Select Some Options Select Some Options
5 60
12/12/18 11:19:34
eAllocated: 2.10 MB
50 Fair Share: 92.70 MB
Steady Fair Share: 23.17 MB
0 Pending: 0B
N 40 12/12/18 11:19:34 Available: 0B
g eAllocated VCores: 2 ¢Reserved-08
H £ 5 Fair Share VCores: 48 z
2 | 12/12/1811:19:34 s Steady Fair Share VCores: 12 2 476808
2 | oApps Submitted: 3 pRending Veares 0
eApps Completed: 4 20 :"a"ab': \\’/20'953?)
Apps Pending: 0 l ‘ RS IE 2384MB
Apps Failed: 0 ()
oApps Killed: 0 0
Apps Running: 1
Apps Running: 0p T
¥ 0 o N— 10
10.Dec 12.Dec 14.Dec 16.Dec 10.Dec 12.Dec 14.Dec 16.Dec Dec

Multi-tenancy / queues

2/6/19

Holistic Cluster Optimization

Applications & VCore Usage o Memory Usage «

Select Some Options Select Some Options

Select Some Options

5 60

12/12/1811:19:34
eAllocated: 2.10 MB
Fair Share: 92.70 MB

50
Steady Fair Share: 23.17 MB
ePending: 0B
2 “ 12/12/1811:19:34 Available: 0B
g eAllocated VCores: 2 eReserved:0B
H [Fair Share VCores: 48
g 12/12/18 11:19:34 s .'S)te:dy Ff/l(rzshamOVCoresv 12 PO
Z | *Apps Submitted: 3 TN USTES
eApps Completed: 4 20 /R\vallablz \\//((::ores,(l))
Apps Pending: 0 ‘ *Reserved VCores: S35
Apps Failed: 0 ® ‘
Apps Killed: 0 10
+Apps Running: 1 . I) op S .
g 0 @ ' 10 12 14 16

10.Dec 12.Dec 14.Dec 16.Dec 10.Dec 12.Dec 14.Dec 16.Dec Dec Dec Dec Dec

Multi-tenancy / queues

Capacity 08/29/17- 08/24/18 (History) - 180 days (Forecasting)

390.625
292.969
Data layouts
97.656 —
o =
Oct '17 Jan'18 Apr '18 Jul'18 Oct '18 Jan'19
— Max Capacity — Disk Utilized Disk Utilization Trend

2/6/19

Holistic Cluster Optimization

Applications

VCore Usage

Memory Usage

Select Some Options

Select Some Options

Select Some Options

12/12/18 11:19:34
*Apps Submitted: 3
eApps Completed: 4
Apps Pending: 0
+Apps Failed: 0 °
*Apps Killed: 0
«Apps Running: 1

Number of Apps

10.Dec 12.Dec

14.Dec 16.Dec

Veores

60

10

. H"\N.;r—"‘k-’w\l‘

12/12/18 11:19:34
eAllocated VCores: 2

Fair Share VCores: 48

Steady Fair Share VCores: 12
ePending VCores: 0

Available VCores: 0
#Reserved VCores: 0

10.Dec 12.Dec 14.Dec 16.Dec

12/12/1811:19:34
eAllocated: 2.10 MB
Fair Share: 92.70 MB
Steady Fair Share: 23.17 MB
ePending: 0B
Available: 0B
eReserved: 0B

Men

47.68MB

2384MB

OBML

Multi-tenancy / queues

Capacity 08/29/17- 08/24/18 (History) - 180 days (Forecasting)

390.625

292.969

195.313

Disk Space

97.656

2/6/19

Oct '17

Jan '18

— Max Capacity

— Disk Utilized

Apr'i8 Jul'is

Oct '18

Disk Utilization Trend

Jan'19

Tune the size of map containers

mapre €.Mmap.me

Recommendation: 2048

y.mb @

Improvement Potential: High ®®®

Using the recommended default would save 50% of 1,263,087,616 MB from 7275 jobs using the current default, or 97% of

total jobsin the workload

Default: 4096 ©@

% Apps Default: 97%

Tune the size of reduce

mapred duce.memo

Recommendation: 2816

ry.mb

Candidate

1792

2048

containers
@

Improvement Potential: High ®®®

Using the recommended default would save 65% of 1,973,538,816 MB from 4060 jobs using the current default, or 97% of

total jobsin the workload

Default: 8192 @

% Apps Default: 97%

= == =

Candidate

2816

3072

% of memor...

56%
o
50%
e

% of memor...

65%
(= =
62%
e

% of jobs ...

80%
(e S——)

85%
o

Configuration

% of jobs ...

o o
© ©
‘* ‘*

uning Instructions

uning Instructions

In Summary

AlOps: Rich opportunities to address
distributed application performance
management as Al/ML problems

We welcome your collaboration!

2/6/19 39

Thank You

Stay informed
https://unraveldata.com/blog/

Free Fully Featured Trial on Amazon EMR, Microsoft Azure, On-premises
https://unraveldata.com/free-trial/

