
Troubleshooting
Spark Challenges
Part 1: TOP TEN SPARK DIFFICULTIES

Spark has become one of the most important tools for
processing data – especially non-relational data – and
deriving value from it. And Spark serves as a platform for the
creation and delivery of analytics, AI, and machine learning
applications, among others. But troubleshooting Spark
applications is hard – and we’re here to help.

In this guide, we’ll describe ten challenges that arise frequently
in troubleshooting Spark applications. We’ll start with issues
at the job level, encountered by most people on the data team
– operations people/administrators, data engineers, and data
scientists, as well as analysts. Then, we’ll look at problems that
apply across a cluster. These problems are usually handled by
operations people/administrators and data engineers.

For more on Spark and its use, please see this piece in
Infoworld. And for more depth about the problems that arise in
creating and running Spark jobs, at both the job level and the
cluster level, please see the links below. There is also a good
introductory guide.

Five Reasons Why Troubleshooting
Spark Applications Is Hard
Some of the things that make Spark great also make it hard to
troubleshoot. Here are some key Spark features, and some of
the issues that arise in relation to them:

1. Memory-resident. Spark gets much of its speed and
power by using memory, rather than disk, for interim storage
of source data and results. However, this can cost a lot of
resources and money, which is especially visible in the cloud. It
can also make it easy for jobs to crash due to lack of sufficient
available memory. And it makes problems hard to diagnose –
only traces written to disk survive after crashes.

2. Parallel processing. Spark takes your job and applies
it, in parallel, to all the data partitions assigned to your job.
(You specify the data partitions, another tough and important
decision.) But when a processing workstream runs into trouble,
it can be hard to find and understand the problem among the
multiple workstreams running at once.

3. Variants. Spark is open source, so it can be tweaked and
revised in innumerable ways. There are major differences
among the Spark 1 series, Spark 2.x, and the newer Spark 3.

And Spark works somewhat differently across platforms –
on-premises; on cloud-specific platforms such as AWS EMR,
Azure HDInsight, and Google Dataproc; and on Databricks,
which is available across the major public clouds. Each variant
offers some of its own challenges, and a somewhat different set
of tools for solving them.

4. Configuration options. Spark has hundreds of
configuration options. And Spark interacts with the hardware
and software environment it’s running in, each component of
which has its own configuration options. Getting one or two
critical settings right is hard; when several related settings
have to be correct, guesswork becomes the norm, and over-
allocation of resources, especially memory and CPUs (see
below) becomes the safe strategy.

5. Trial and error approach. With so many configuration
options, how to optimize? Well, if a job currently takes six
hours, you can change one, or a few, options, and run it again.
That takes six hours, plus or minus. Repeat this three or four
times, and it’s the end of the week. You may have improved
the configuration, but you probably won’t have exhausted the
possibilities as to what the best settings are.

The Spark application is the Driver Process, and the job is
split up across executors. (Source: Apache Spark for the
Impatient on DZone.)

Three Issues with Spark Jobs,
on-Premises and in the Cloud
Spark jobs can require troubleshooting against three main
kinds of issues:

•	 Failure. Spark jobs can simply fail. Sometimes a job will
fail on one try, then work again after a restart. Just finding
out that the job failed can be hard; finding out why can be
harder. (Since the job is memory-resident, failure makes the
evidence disappear.)

•	 Poor performance. A Spark job can run slower than
you would like it to; slower than an external service level
agreement (SLA); or slower than it would do if it were
optimized. It’s very hard to know how long a job “should”
take, or where to start in optimizing a job or a cluster.

“The most difficult thing is finding
out why your job is failing, which
parameters to change. Most of
the time, it’s OOM errors...”
		 – Jagat Singh, Quora

https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://duo.com/labs/tech-notes/debugging-apache-spark-pipelines
https://dzone.com/articles/apache-spark-in-a-nutshell
https://dzone.com/articles/apache-spark-in-a-nutshell
https://www.quora.com/What-are-the-advantages-of-Databricks-vs-deploying-your-own-Spark-cluster

•	 Excessive cost or resource use. The resource use or,
especially in the cloud, the hard dollar cost of a job may raise
concern. As with performance, it’s hard to know how much
the resource use and cost “should” be, until you put work
into optimizing and see where you’ve gotten to.

All of the issues and challenges described here apply to Spark
across all platforms, whether it’s running on-premises, in
Amazon EMR, or on Databricks (across AWS, Azure, or GCP).
However, there are a few subtle differences:

•	 Move to cloud. There is a big movement of big data
workloads from on-premises (largely running Spark on
Hadoop) to the cloud (largely running Spark on Amazon
EMR or Databricks). Moving to cloud provides greater
flexibility and faster time to market, as well as access to
built-in services found on each platform.

•	 Move to on-premises. There is a small movement
of workloads from the cloud back to on-premises
environments. When a cloud workload “settles down,”
such that flexibility is less important, then it may become
significantly cheaper to run it on-premises instead.

•	 On-premises concerns. Resources (and costs) on-
premises tend to be relatively fixed; there can be a leadtime
of months to years to significantly expand on-premises
resources. So the main concern on-premises is maximizing
the existing estate: making more jobs run in existing
resources, and getting jobs to complete reliably and on-time,
to maximize the pay-off from the existing estate.

•	 Cloud concerns. Resources in the cloud are flexible
and “pay as you go” – but as you go, you pay. So the main
concern in the cloud is managing costs. (As AWS puts it,
“When running big data pipelines on the cloud, operational
cost optimization is the name of the game.”) This concern
increases because reliability concerns in the cloud can often
be addressed by “throwing hardware at the problem” –
increasing reliability, but at greater cost.

•	 On-premises Spark vs Amazon EMR. When moving
to Amazon EMR, it’s easy to do a “lift and shift” from
on-premises Spark to EMR. This saves time and money
on the cloud migration effort, but any inefficiencies in the
on-premises environment are reproduced in the cloud,
increasing costs. It’s also fully possible to refactor before
moving to EMR, just as with Databricks.

•	 On-premises Spark vs Databricks. When moving to
Databricks, most companies take advantage of Databricks’
capabilities, such as ease of starting/shutting down clusters,
and do at least some refactoring as part of the cloud
migration effort. This costs time and money in the cloud
migration effort, but results in lower costs and, potentially,
greater reliability for the refactored job in the cloud.

All of these concerns are accompanied by a distinct lack of
needed information. Companies often make crucial decisions –
on-premises vs. cloud, EMR vs. Databricks, “lift and shift” vs.
refactoring – with only guesses available as to what different
options will cost in time, resources, and money.

Ten Spark Challenges
Many Spark challenges relate to configuration, including the
number of executors to assign, memory usage (at the driver
level, and per executor), and what kind of hardware/machine
instances to use. You make configuration choices per job, and
also for the overall cluster in which jobs run, and these are
interdependent – so things get complicated, fast.

Some challenges occur at the job level; these challenges are
shared right across the data team. They include:

1.	 How many executors should each job use?

2.	 How much memory should I allocate for each job?

3.	 How do I find and eliminate data skew?

4.	 How do I make my pipelines work better?

5.	 How do I know if a specific job is optimized?

Other challenges come up at the cluster level, or even at the
stack level, as you decide what jobs to run on what clusters.
These problems tend to be the remit of operations people and
data engineers. They include:

6.	 How do I size my nodes, and match them to the right
servers/instance types?

7.	 How do I see what’s going on across the Spark stack
and apps?

8.	 Is my data partitioned correctly for my SQL queries?

9.	 When do I take advantage of auto-scaling?

10.	How do I get insights into jobs that have problems?

For easy access, these challenges are listed below, linked to the
appropriate page in this guide:

Job-Level Challenges
1.	 Executor and core allocation

2.	 Memory allocation

3.	 Data skew/small files

4.	 Pipeline optimization

5.	 Finding out whether a job is
optimized

Impacts: Resources for a given job (at the cluster level) or
across clusters tend to be significantly under-allocated (causes
crashes, hurting business results) or over-allocated (wastes
resources and can cause other jobs to crash, both of which hurt
business results).

Cluster-Level Challenges
6.	 Resource allocation

7.	 Observability

8.	Data partitioning vs. SQL
queries/inefficiency

9. Use of auto-scaling

10. Troubleshooting

https://aws.amazon.com/blogs/big-data/how-verizon-media-group-migrated-from-on-premises-apache-hadoop-and-spark-to-amazon-emr/

Section 1: Five Job-Level Challenges
These challenges occur at the level of individual jobs. Fixing
them can be the responsibility of the developer or data scientist
who created the job, or of operations people or data engineers
who work on both individual jobs and at the cluster level.

However, job-level challenges, taken together, have massive
implications for clusters, and for the entire data estate. One
of our Unravel Data customers has undertaken a right-
sizing program for resource-intensive jobs that has clawed
back nearly half the space in their clusters, even though
data processing volume and jobs in production have been
increasing.

For these challenges, we’ll assume that the cluster your job is
running in is relatively well-designed (see next section); that
other jobs in the cluster are not resource hogs that will knock
your job out of the running; and that you have the tools you
need to troubleshoot individual jobs.

1. HOW MANY EXECUTORS AND CORES
SHOULD A JOB USE?
One of the key advantages of Spark is parallelization – you
run your job’s code against different data partitions in
parallel workstreams, as in the diagram below. The number of
workstreams that run at once is the number of executors, times
the number of cores per executor. So how many executors
should your job use, and how many cores per executor – that
is, how many workstreams do you want running at once?

A Spark job using three cores to parallelize output.
Up to three tasks run simultaneously, and seven tasks are
completed in a fixed period of time. (Source:
Lisa Hua, Spark Overview, Slideshare.)

You want high usage of cores, high usage of memory per
core, and data partitioning appropriate to the job. (Usually,
partitioning on the field or fields you’re querying on.) This
beginner’s guide for Hadoop suggests two-three cores per
executor, but not more than five; this expert’s guide to Spark
tuning on AWS suggests that you use three executors per node,
with five cores per executor, as your starting point for all jobs.

You are likely to have your own sensible starting point for
your on-premises or cloud platform, the servers or instances
available, and experience your team has had with similar
workloads. Once your job runs successfully a few times, you
can either leave it alone, or optimize it. We recommend that
you optimize it, because optimization:

•	 Helps you save resources and money (not over-allocating)

•	 Helps prevent crashes, because you right-size the resources
(not under-allocating)

•	 Helps you fix crashes fast, because allocations are roughly
correct, and because you understand the job better

2. HOW MUCH MEMORY SHOULD I
ALLOCATE FOR EACH JOB?
Memory allocation is per executor, and the most you can
allocate is the total available in the node. If you’re in the cloud,
this is governed by your instance type; on-premises, by your
physical server or virtual machine. Some memory is needed
for your cluster manager and system resources (16GB may be a
typical amount), and the rest is available for jobs.

If you have three executors in a 128GB cluster, and 16GB
is taken up by the cluster, that leaves 37GB per executor.
However, a few GB will be required for executor overhead;
the remainder is your per-executor memory. You will want
to partition your data so it can be processed efficiently in the
available memory.

This is just a starting point, however. You may need to be using
a different instance type, or a different number of executors,
to make the most efficient use of your node’s resources against
the job you’re running. As with the number of executors (see
previous section), optimizing your job will help you know
whether you are over- or under-allocating memory, reduce the
likelihood of crashes, and get you ready for troubleshooting
when the need arises.

For more on memory management, see this widely read article,
Spark Memory Management, by our own Rishitesh Mishra.

3. HOW DO I HANDLE DATA SKEW AND
SMALL FILES?
Data skew and small files are complementary problems. Data
skew tends to describe large files – where one key value, or a
few, have a large share of the total data associated with them.
This can force Spark, as it’s processing the data, to move data
around in the cluster, which can slow down your task, cause
low utilization of CPU capacity, and cause out-of-memory
errors which abort your job. Several techniques for handling
very large files which appear as a result of data skew are given
in the popular article, Data Skew and Garbage Collection, by
Rishitesh Mishra of Unravel.

https://www.slideshare.net/LisaHua/spark-overview-37479609
http://beginnershadoop.com/2019/09/30/distribution-of-executors-cores-and-memory-for-a-spark-application/
https://medium.com/expedia-group-tech/part-3-efficient-executor-configuration-for-apache-spark-b4602929262
https://www.unraveldata.com/common-reasons-spark-applications-slow-fail-part-1/
https://www.unraveldata.com/common-failures-slowdowns-part-ii/

Small files are partly the other end of data skew – a share
of partitions will tend to be small. And Spark, since it is a
parallel processing system, may generate many small files from
parallel processes. Also, some processes you use, such as file
compression, may cause a large number of small files to appear,
causing inefficiencies. You may need to reduce parallelism
(undercutting one of the advantages of Spark), repartition (an
expensive operation you should minimize), or start adjusting
your parameters, your data, or both (see details).

Both data skew and small files incur a meta-problem that’s
common across Spark – when a job slows down or crashes,
how do you know what the problem was? We will mention
this again, but it can be particularly difficult to know this for
data-related problems, as an otherwise well-constructed job
can have seemingly random slowdowns or halts, caused by
hard-to-predict and hard-to-detect inconsistencies across
different data sets.

4. HOW DO I OPTIMIZE AT THE PIPELINE
LEVEL?
Spark pipelines are made up of dataframes, connected by
transformers (which calculate new data from existing data),
and Estimators. Pipelines are widely used for all sorts of
processing, including extract, transform, and load (ETL) jobs
and machine learning. Spark makes it easy to combine jobs
into pipelines, but it does not make it easy to monitor and
manage jobs at the pipeline level. So it’s easy for monitoring,
managing, and optimizing pipelines to appear as an
exponentially more difficult version of optimizing individual
Spark jobs.

Existing Transformers create new Dataframes, with an
Estimator producing the final model. (Source: Spark
Pipelines: Elegant Yet Powerful, InsightDataScience.)

Many pipeline components are “tried and trusted” individually,
and are thereby less likely to cause problems than new
components you create yourself. However, interactions
between pipeline steps can cause novel problems.

Just as job issues roll up to the cluster level, they also roll up
to the pipeline level. Pipelines are increasingly the unit of work
for DataOps, but it takes truly deep knowledge of your jobs and
your cluster(s) for you to work effectively at the pipeline level.
This article, which tackles the issues involved in some depth,
describes pipeline debugging as an “art.”

5. HOW DO I KNOW IF A SPECIFIC JOB IS
OPTIMIZED?
Neither Spark nor, for that matter, SQL are designed for ease of
optimization. Spark comes with a monitoring and management
interface, Spark UI, which can help. But Spark UI can be
challenging to use, especially for the types of comparisons –
over time, across jobs, and across a large, busy cluster – that
you need to really optimize a job. And there is no “SQL UI” that
specifically tells you how to optimize your SQL queries.

There are some general rules. For instance, a “bad” – inefficient
– join can take hours. But it’s very hard to find where your app
is spending its time, let alone whether a specific SQL command
is taking a long time, and whether it can indeed be optimized.

Spark’s Catalyst optimizer does its best to optimize your queries
for you. But when data sizes grow large enough, and processing
gets complex enough, you have to help it along if you want your
resource usage, costs, and runtimes to stay on the acceptable side.

Section 2: Cluster-Level Challenges
Cluster-level challenges are those that arise for a cluster that
runs many (perhaps hundreds or thousands) of jobs, in cluster
design (how to get the most out of a specific cluster), cluster
distribution (how to create a set of clusters that best meets
your needs), and allocation across on-premises resources and
one or more public, private, or hybrid cloud resources.

The first step toward meeting cluster-level challenges is to meet
job-level challenges effectively, as described above. A cluster
that’s running unoptimized, poorly understood, slowdown-
prone and crash-prone jobs is impossible to optimize. But if
your jobs are right-sized, cluster-level challenges become much
easier to meet. (Note that Unravel Data, as mentioned in the
previous section, helps you find your resource-heavy Spark
jobs, and optimize those first. It also does much of the work of
troubleshooting and optimization for you.)

Meeting cluster-level challenges for Spark may be a topic better
suited for a graduate-level computer science seminar than for
this guide, but here are some of the issues that come up, and a
few comments on each:

6. ARE NODES MATCHED UP TO SERVERS
OR CLOUD INSTANCES?
A Spark node – a physical server or a cloud instance – will
have an allocation of CPUs and physical memory. (The whole
point of Spark is to run things in actual memory, so this is
crucial.) You have to fit your executors and memory allocations
into nodes that are carefully matched to existing resources,
on-premises or in the cloud. (You can allocate more or fewer
Spark cores than there are available CPUs, but matching them
makes things more predictable, uses resources better, and may
make troubleshooting easier.)

https://www.linkedin.com/pulse/apache-spark-small-file-problem-simple-advanced-solutions-garg/
https://blog.insightdatascience.com/spark-pipelines-elegant-yet-powerful-7be93afcdd42
https://blog.insightdatascience.com/spark-pipelines-elegant-yet-powerful-7be93afcdd42
https://duo.com/labs/tech-notes/debugging-apache-spark-pipelines
https://www.unraveldata.com/resources/catalyst-analyst-a-deep-dive-into-sparks-optimizer/
https://www.unraveldata.com/technologies/spark/

On-premises, poor matching between nodes, physical servers,
executors and memory results in inefficiencies, but these may
not be very visible; as long as the total physical resource is
sufficient for the jobs running, there’s no obvious problem.
However, issues like this can cause datacenters to be very
poorly utilized, meaning there’s big overspending going on
– it’s just not noticed. (Ironically, the impending prospect of
cloud migration may cause an organization to freeze on-
premises spending, shining a spotlight on costs and efficiency.)

In the cloud, “pay as you go” pricing shines a different type of
spotlight on efficient use of resources – inefficiency shows up
in each month’s bill. You need to match nodes, cloud instances,
and job CPU and memory allocations very closely indeed, or
incur what might amount to massive overspending. This article
gives you some guidelines for running Apache Spark cost-
effectively on AWS EC2 instances, and is worth a read even if
you’re running on-premises, or on a different cloud provider.

You still have big problems here. In the cloud, with costs both
visible and variable, cost allocation is a big issue. It’s hard to
know who’s spending what, let alone what the business results
that go with each unit of spending are. But tuning workloads
against server resources and/or instances is the first step in
gaining control of your spending, across all your data estates.

7. HOW DO I SEE WHAT’S GOING ON IN
MY CLUSTER?
“Spark is notoriously difficult to tune and maintain,” according
to an article in The New Stack. Clusters need to be “expertly
managed” to perform well, or all the good characteristics of
Spark can come crashing down in a heap of frustration and
high costs. (In people’s time and in business losses, as well as
direct, hard dollar costs.)

Key Spark advantages include accessibility to a wide range of
users and the ability to run in memory. But the most popular
tool for Spark monitoring and management, Spark UI, doesn’t
really help much at the cluster level. You can’t, for instance,
easily tell which jobs consume the most resources over time. So
it’s hard to know where to focus your optimization efforts. And
Spark UI doesn’t support more advanced functionality – such
as comparing the current job run to previous runs, issuing
warnings, or making recommendations, for example.

Logs on cloud clusters are lost when a cluster is terminated,
so problems that occur in short-running clusters can be that
much harder to debug. More generally, managing log files
is itself a big data management and data accessibility issue,
making debugging and governance harder. This occurs in both
on-premises and cloud environments. And, when workloads
are moved to the cloud, you no longer have a fixed-cost data
estate, nor the “tribal knowledge” accrued from years of
running a gradually changing set of workloads on-premises.
Instead, you have new technologies and pay-as-you-go billing.
So cluster-level management, hard as it is, becomes critical.

8. IS MY DATA PARTITIONED CORRECTLY
FOR MY SQL QUERIES? (AND OTHER
INEFFICIENCIES)
Operators can get quite upset, and rightly so, over “bad” or
“rogue” queries that can cost way more, in resources or cost,
than they need to. One colleague describes a team he worked
on that went through more than $100,000 of cloud costs in a
weekend of crash-testing a new application – a discovery made
after the fact. (But before the job was put into production,
where it would have really run up some bills.)

SQL is not designed to tell you how much a query is likely
to cost, and more elegant-looking SQL queries (i.e., fewer
statements) may well be more expensive. The same is true of
all kinds of code you have running. So you have to do some or
all of three things:

•	 Learn something about SQL, and about coding languages
you use, especially how they work at runtime

•	 Understand how to optimize your code and partition your
data for good price/performance

•	 Experiment with your app to understand where the resource
use/cost “hot spots” are, and reduce them where possible

All this fits in the “optimize” recommendations from 1. and 2.
above. We’ll talk more about how to carry out optimization in
Part 2 of this guide.

9. WHEN DO I TAKE ADVANTAGE OF
AUTO-SCALING?
The ability to auto-scale – to assign resources to a job just
while it’s running, or to increase resources smoothly to meet
processing peaks – is one of the most enticing features of the
cloud. It’s also one of the most dangerous; there is no practical
limit to how much you can spend. You need some form of
guardrails, and some form of alerting, to remove the risk of
truly gigantic bills.

The need for auto-scaling might, for instance, determine whether
you move a given workload to the cloud, or leave it running,
unchanged, in your on-premises data center. But to help an
application benefit from auto-scaling, you have to profile it,
then cause resources to be allocated and de-allocated to match
the peaks and valleys. And you have some calculations to make,
because cloud providers charge you more for spot resources
– those you grab and let go of, as needed – than for persistent
resources that you keep running for a long time. Spot resources
may cost two or three times as much as dedicated ones.

The first step, as you might have guessed, is to optimize your
application, as in the previous sections. Auto-scaling is a price/
performance optimization, and a potentially resource-intensive
one. You should do other optimizations first.

Then profile your optimized application. You need to calculate
ongoing and peak memory and processor usage, figure out

https://medium.com/expedia-group-tech/part-1-cloud-spending-efficiency-guide-for-apache-spark-on-ec2-instances-79ee8814de4e
https://thenewstack.io/the-good-bad-and-ugly-apache-spark-for-data-science-work/

how long you need each, and the resource needs and cost for
each state. And then decide whether it’s worth auto-scaling the
job, whenever it runs, and how to do that. You may also need
to find quiet times on a cluster to run some jobs, so the job’s
peaks don’t overwhelm the cluster’s resources.

To help, Databricks has two types of clusters, and the second
type works well with auto-scaling. Most jobs start out in
an interactive cluster, which is like an on-premises cluster;
multiple people use a set a shared resources. It is, by definition,
very difficult to avoid seriously underusing the capacity of an
interactive cluster.

So you are meant to move each of your repeated, resource-
intensive, and well-understood jobs off to its own, dedicated,
job-specific cluster. A job-specific cluster spins up, runs its job,
and spins down. This is a form of auto-scaling already, and
you can also scale the cluster’s resources to match job peaks, if
appropriate. But note that you want your application profiled
and optimized before moving it to a job-specific cluster.

10. HOW DO I FIND AND FIX PROBLEMS?
Just as it’s hard to fix an individual Spark job, there’s no
easy way to know where to look for problems across a Spark
cluster. And once you do find a problem, there’s very little
guidance on how to fix it. Is the problem with the job itself, or
the environment it’s running in? For instance, over-allocating
memory or CPUs for some Spark jobs can starve others. In the
cloud, the noisy neighbors problem can slow down a Spark job
run to the extent that it causes business problems on one outing
– but leaves the same job to finish in good time on the next run.

The better you handle the other challenges listed in this guide,
the fewer problems you’ll have, but it’s still very hard to know
how to most productively spend Spark operations time. For
instance, a slow Spark job on one run may be worth fixing in
its own right, and may be warning you of crashes on future
runs. But it’s very hard just to see what the trend is for a Spark
job in performance, let alone to get some idea of what the
job is accomplishing vs. its resource use and average time to
complete. So Spark troubleshooting ends up being reactive,
with all too many furry, blind little heads popping up for
operators to play Whack-a-Mole with.

Impacts of These Challenges
If you meet the above challenges effectively, you’ll use your
resources efficiently and cost-effectively. However, our
observation here at Unravel Data is that most Spark clusters
are not run efficiently.

What we tend to see most are the following problems –
at a job level, within a cluster, or across all clusters:

•	 Under-allocation. It can be tricky to allocate your
resources efficiently on your cluster, partition your datasets
effectively, and determine the right level of resources for
each job. If you under-allocate (either for a job’s driver or
the executors), a job is likely to run too slowly, or to crash.
As a result, many developers and operators resort to…

•	 Over-allocation. If you assign too many resources to
your job, you’re wasting resources (on-premises) or money
(cloud). We hear about jobs that need, for example, 2GB of
memory, but are allocated much more – in one case, 85GB.

Applications can run slowly, because they’re under-allocated –
or because some apps are over-allocated, causing others to run
slowly. Data teams then spend much of their time fire-fighting
issues that may come and go, depending on the particular
combination of jobs running that day. With every level of
resource in shortage, new, business-critical apps are held up,
so the cash needed to invest against these problems doesn’t
show up. IT becomes an organizational headache, rather than a
source of business capability.

Conclusion
To jump ahead to the end of this series a bit, our customers
here at Unravel are easily able to spot and fix over-allocation
and inefficiencies. They can then monitor their jobs in
production, finding and fixing issues as they arise. Developers
even get on board, checking their jobs before moving them to
production, then teaming up with Operations to keep them
tuned and humming.

One Unravel customer, Mastercard, has been able to reduce
usage of their clusters by roughly half, even as data sizes and
application density has moved steadily upward during the
global pandemic. And everyone gets along better, and has
more fun at work, while achieving these previously unimagined
results.

So, whether you choose to use Unravel or not, develop a culture
of right-sizing and efficiency in your work with Spark. It will
seem to be a hassle at first, but your team will become much
stronger, and you’ll enjoy your work life more, as a result.

You need a sort of X-ray of your Spark jobs, better cluster-level
monitoring, environment information, and to correlate all
of these sources into recommendations. In Troubleshooting
Spark Applications, Part 2: Solutions, we will describe the
most widely used tools for Spark troubleshooting – including
the Spark Web UI and our own offering, Unravel Data – and
how to assemble and correlate the information you need. If
you would like to know more about Unravel Data now, you can
download a free trial or contact Unravel.

© Unravel. All rights reserved. Unravel and the Unravel logo are registered trademarks
of Unravel. All other trademarks are the property of their respective owners.

unraveldata.com | hello@unraveldata.com

https://www.unraveldata.com/resources/mastercard-improves-platform-resiliency-by-detecting-harmful-workloads/
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/
http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=

