
Troubleshooting
Spark Applications

PART 2: FIVE TYPES OF SOLUTIONS

Job-Level Challenges
1. Executor and core allocation

2. Memory allocation

3.	Data	skew/small	files

4. Pipeline optimization

5. Finding out whether a job
is optimized

Cluster-Level Challenges
6. Resource allocation

7. Observability

8. Data partitioning vs. SQL
queries/inefficiency

9. Use of auto-scaling

10. Troubleshooting

Impacts: Resources for a given job (at the cluster level) or
across	clusters	tend	to	be	significantly	under-allocated	(causes	
crashes,	hurting	business	results)	or	over-allocated	(wastes	
resources and can cause other jobs to crash, both of which
hurt business results).

Note: This guide applies to running Spark jobs on any
platform, including Cloudera platforms; cloud vendor-specific
platforms – Amazon EMR, Microsoft HDInsight, Microsoft
Synapse, Google DataProc; Databricks, which is on all
three major public cloud providers; and Apache Spark on
Kubernetes, which runs on nearly all platforms, including
on-premises and cloud.

Introduction
Spark	is	known	for	being	extremely	difficult	to	debug.	But	this	
is not all Spark’s fault. Problems in running a Spark job can be
the result of problems with the infrastructure Spark is running
on,	inappropriate	configuration	of	Spark,	Spark	issues,	the	
currently running Spark job, other Spark jobs running at the
same	time	-	or	interactions	among	these	layers.	But	Spark	jobs	
are very important to the success of the business; when a job
crashes, or runs slowly, or contributes to a big increase in the
bill	from	your	cloud	provider,	you	have	no	choice	but	to	fix	
the problem.

Widely used tools generally focus on part of the environment
– the Spark job, infrastructure, the network layer, etc. These
tools	don’t	present	a	holistic	view.	But	that’s	just	what	you	
need to truly solve problems. (You also need the holistic view
when you’re creating the Spark job, and as a check before you
start	running	it,	to	help	you	avoid	having	problems	in	the	first	
place.	But	that’s	another	story.)	

In this guide, Part 2 in a series, we’ll show ten major tools that
people use for Spark troubleshooting. We’ll show what they do
well,	and	where	they	fall	short.	In	Part	3,	the	final	piece,	we’ll	
introduce Unravel Data, which makes solving many of these
problems easier.

What’s the Problem(s)?
The problems we mentioned in Part 1 of this series have many
potential solutions. The methods people usually use to try to
solve them often derive from that person’s role on the data
team. The person who gets called when a Spark job crashes,
such as the job’s developer, is likely to look at the Spark job.
The person who is responsible for making sure the cluster is
healthy will look at that level. And so on.

The following chart, from Part 1, shows the most common
job-level	and	cluster-level	challenges	that	data	teams	face	in	
successfully running Spark jobs.

In this guide, we highlight five types of solutions that
people use – often in various combination – to solve problems
with Spark jobs

1. Spark UI

2. Spark logs

3. Platform-level tools such as Cloudera Manager, the
Amazon EMR UI, Cloudwatch, the Databricks UI,
and Ganglia

4. APM tools such as Cisco AppDynamics, Datadog,
and Dynatrace

5. DataOps platforms such as Unravel Data

As an example of solving problems of this type, let’s look at the
problem of an application that’s running too slowly – a very
common Spark problem, that may be caused by one or more
of the issues listed in the chart. Here. we’ll look at how existing
tools might be used to try to solve it.

Note: Many of the observations and images in this guide
originated in the July 2021 presentation, Beyond	Observability:	
Accelerate Performance on Databricks, by Patrick Mawyer,
Systems Engineer at Unravel Data. We recommend this
webinar to anyone interested in Spark troubleshooting and
Spark performance management, whether on Databricks or on
other platforms.

Life as a Spark developer

https://www.brighttalk.com/webcast/17674/492826
https://www.brighttalk.com/webcast/17674/492826

Solving Problems Using Spark UI
Spark	UI	is	the	first	tool	most	data	team	members	use	when	
there’s a problem with a Spark job. It shows a snapshot of
currently running jobs, the stages jobs are in, storage usage,
and more. It does a good job, but is seen as having some faults.
It	can	be	hard	to	use,	with	a	low	signal-to-noise	ratio	and	a	
long learning curve. It doesn’t tell you things like which jobs
are taking up more or less of a cluster’s resources, nor deliver
critical observations such as CPU, memory, and I/O usage.

In the case of a slow Spark application, Spark UI will show you
what the current status of that job is. You can also use Spark
UI for past jobs, if the logs for those jobs still exist, and if they
were	configured	to	log	events	properly.	Also,	the	Spark	history	
server tends to crash. When this is all working, it can help you
find	out	how	long	an	application	took	to	run	in	the	past	–	you	
need to do this kind of investigative work just to determine
what “slow” is.

The	following	screenshot	is	for	a	Spark	1.4.1	job	with	a	two-
node cluster. It shows a Spark Streaming job that steadily uses
more memory over time, which might cause the job to slow
down. And the job eventually – over a matter of days – runs
out of memory.

A Spark streaming job that uses progressively more
memory over time.	(Source:	Stack	Overflow)

To solve this problem, you might do several things. Here’s a
brief list of possible solutions, and the problems they might
cause	elsewhere:

• Increase available memory for each worker. You can
increase the value of the spark.executor.memory variable
to increase the memory for each worker. This will not
necessarily speed the job up, but will defer the eventual
crash. However, you are either taking memory away
from other jobs in your cluster or, if you’re in the cloud,
potentially running up the cost of the job.

• Increase the storage fraction. You can change the value
of spark.storage.memoryFraction, which varies from 0 to 1,
to a higher fraction. Since the Java virtual machine (JVM)
uses	memory	for	caching	RDDs	and	for	shuffle	memory,	
you	are	increasing	caching	memory	at	the	expense	of	shuffle	
memory.	This	will	cause	a	different	failure	if,	at	some	point,	
the	job	needs	shuffle	memory	that	you	allocated	away	at	
this step.

• Increase the parallelism of the job. For a Spark
Cassandra Connector job, for example, you can change spark.
cassandra.input.split.size	to	a	smaller	value.	(It’s	a	different	
variable for other RDD types.) Increasing parallelism
decreases the data set size for each worker, requiring
less	memory	per	worker.	But	more	workers	means	more	
resources	used;	in	a	fixed	resources	environment,	this	takes	
resources away from other jobs; in a dynamic environment,
such as Databricks job clusters, it directly runs up your bill.

The point here is that everything you might do has a certain
amount of guesswork to it, because you don’t have complete
information. And, whichever approach you choose, you are
putting	the	job	in	line	for	other,	different	problems,	including	
later failure, failure for other reasons, or increased cost.
Alternatively,	your	job	may	be	fine,	but	at	the	expense	of	
other jobs that then fail, and those failures will also be hard to
troubleshoot.

Spark UI, showing metrics for completed tasks.
(Source:	Unravel	Data)

Here’s a look at the Stages section of Spark UI. It gives you a
list of metrics across executors. However, there’s no overview
or	big	picture	view	to	help	guide	you	in	finding	problems.	And	
the tool doesn’t make recommendations to help you solve
problems,	or	avoid	them	in	the	first	place.	

Spark UI is limited to Spark – and Spark job for example may
have data coming in from Kafka, and run alongside other tools.
Each of those has its own monitoring and management tools,
or does without; Spark UI doesn’t work with them. It also lacks
pro-active	alerting,	automatic	actions,	and	AI-driven	insights,	
all found in Unravel.

Spark	UI	is	very	useful	for	what	it	does,	but	its	limitations	-	
and	the	limitations	of	the	other	tool	types	described	here	-	lead	
many organizations to build homegrown tools or toolsets, often
built	on	Grafana.	These	solutions	are	resource-intensive,	hard	
to	extend,	hard	to	support,	and	hard	to	keep	up-to-date.	

A	few	individuals	and	organizations	even	offer	their	
homegrown tools as open source software for other
organizations to use, but of course support, documentation,
and updates are limited. Several such tools, such as Sparklint
and DrElephant, do not support recent versions of Spark. At
this writing, they have not had many, if any, fresh commits in
recent months or even years.

https://stackoverflow.com/questions/35478223/size-in-memory-under-storage-tab-of-spark-ui-showing-increase-in-ram-usage-ove

Spark Logs
Spark logs are the underlying resource for troubleshooting
Spark jobs. Spark UI can even use Spark logs, if available, to
rebuild a view of the Spark environment on an historical basis.
You can use the logs related to the job’s driver and executors to
retrospectively	find	out	what	happened	to	a	given	job,	and	even	
some information about what was going on with other jobs at
the time.

If you have a slow app, for instance, you can painstakingly
assemble a picture to tell you if the slowness was in one task
versus	the	other	by	scanning	through	multiple	log	files.	But	
answering	why	and	finding	the	root	cause	is	hard.	These	logs	
don’t have complete information about resource usage, data
partitioning,	correct	configuration	setting	and	many	other	
factors	than	can	affect	the	performance.	ere	are	also	many	
potential issues that don’t show up in Spark logs, such as
“noisy neighbor” or networking issues that reduce resource
availability within your Spark environment.

• Missing files. Governance rules and data storage
considerations	take	files	away,	as	files	are	moved	to	
archival media or simply lost to deletion. More than one
large	organization	deletes	files	every	90	days,	which	makes	
quarterly	summaries	very	difficult,	and	comparisons	to,	say,	
the previous year’s holiday season or tax season impossible.

• Only Spark-specific information. Spark logs are just that
-	logs	from	Spark.	They	don’t	include	much	information	about	
the	infrastructure	available,	resource	allocation,	configuration	
specifics,	etc.	Yet	this	information	is	vital	to	solving	a	great	
many of the problems that hamper Spark jobs.

Because	Spark	logs	don’t	cover	infrastructure	and	related	
information,	it’s	up	to	the	operations	person	to	find	as	much	
information they can on those other important areas, then try
to integrate it all and determine the source of the problem.
(Which may be the result of a complex interaction among
different	factors,	with	multiple	changes	needed	to	fix	it.)	

Platform-Level Solutions
There	are	platform-level	solutions	that	work	on	a	given	Spark	
platform, such as Cloudera Manager, the Amazon EMR UI, and
Databricks UI. In general, these interfaces allow you to work
at the cluster level. They tell you information about resource
usage and the status of various services.

If you have a slow app, for example, these tools will give you
part of the picture you need to put together to determine
the	actual	problem,	or	problems.	But	these	tools	do	not	
have	the	detail-level	information	in	the	tools	above,	nor	do	
they even have all the environmental information you need.
So again, it’s up to you to decide how much time to spend
researching, to pull all the information together, and to try
to	determine	a	solution.	A	quick	fix	might	take	a	few	hours;	a	
comprehensive,	long-term	solution	may	take	days	of	research	
and experimentation.

This screenshot shows Databricks UI. It gives you a solid
overview of jobs and shows you status, cluster type, and so on.
Like	other	platform-level	solutions,	it	doesn’t	help	you	much	
with historical runs, nor in working at the pipeline level, across
the multiple jobs that make up the pipeline.

Source:	Unravel	Data

Spark	logs	are	a	tremendous	resource,	and	are	always	a	go-to	
for solving problems with Spark jobs. However, if you depend
on logs as a major component of your troubleshooting toolkit,
several	problems	come	up,	including:	

• Access and governance difficulties. In highly secure
environments, it can take time to get permission to access
logs, or you may need to ask someone with the proper
permissions	to	access	the	file	for	you.	In	some	highly	
regulated	companies,	such	as	financial	institutions,	it	can	
take hours per log to get access.

• Multiple files. You may need to look at the logs for a
driver	and	several	executors,	for	instance,	to	solve	job-level	
problems. And your brain is the comparison and integration
engine that pulls the information together, makes sense of it,
and develops insights into possible causes and solutions.

• Voluminous files.	The	file	for	one	component	of	a	job	
can	be	very	large,	and	all	the	files	for	all	the	components	of	
a	job	can	be	huge	-	especially	for	long-running	jobs.	Again,	
you	are	the	one	who	has	to	find	and	retain	each	part	of	
the information needed, develop a complete picture of the
problem,	and	try	different	solutions	until	one	works.	

Source:	Unravel	Data

Another monitoring tool for Spark, which is included as
open source within Databricks, is called Ganglia. It’s largely
complementary to Databricks UI, though it also works at the
cluster	and,	in	particular,	at	the	node	level.	You	can	see	host-
level metrics such as CPU consumption, memory consumption,
disk	usage,	network-level	IO	–	all	host-level	factors	that	can	
affect	the	stability	and	performance	of	your	job.	

This	can	allow	you	to	see	if	your	nodes	are	configured	
appropriately,	to	institute	manual	scaling	or	auto-scaling,	or	to	
change	instance	types.	(Though	someone	trying	to	fix	a	specific	
job	is	not	inclined	to	take	on	issues	that	affect	other	jobs,	other	
users, resource availability, and cost.) Ganglia does not have
job-specific	insights,	nor	work	with	pipelines.	And	there	are	no	
good output options; you might be reduced to taking a screen
snapshot to get a JPEG or PNG image of the current status.

Platform-level	solutions	can	be	useful	for	solving	the	root	
causes	of	problems	such	as	out-of-memory	errors.	However,	
they don’t go down to the job level, leaving that to resources
such as Spark logs and tools such as Spark UI. Therefore, to
solve	a	problem,	you	are	often	using	platform-level	solutions	
in	combination	with	job-level	tools	–	and	again,	it’s	your	brain	
that has to do the comparisons and data integration needed to
get a complete picture and solve the problem.

Like	job-level	tools,	these	solutions	are	not	comprehensive,	
nor	integrated.	They	offer	snapshots,	but	not	history,	and	
they don’t make proactive recommendations. And, to solve
a problem on Databricks, for example, you may be using
Spark logs, Spark UI, Databricks UI, and Ganglia, along with
Cloudwatch on AWS, or Azure Log Monitoring and Analytics.
None of these tools integrate with the others.

APM Tools
There is a wide range of monitoring tools, generally known
as Application Performance Management (APM) tools. Many
organizations have adopted one or more tools from this
category, though they can be expensive, and provide very
limited metrics on Spark and other modern data technologies.
Leading tools in this category include Datadog, Dynatrace, and
Cisco AppDynamics.

Source:	Unravel	Data

Support	from	the	open-source	community	is	starting	to	shift	
toward more modern observability platforms like Prometheus,
which works well with Kubernetes. And cloud providers
offer	their	own	solutions	–	AWS	Cloudwatch,	for	example,	
and Azure Log Monitoring and Analytics. These tools are all
oriented toward web applications, not the backend apps used
for analytics, AI, machine learning, and other use cases that
are usually considered part of the big data world. They lack big
data application and pipeline information which is essential to
understand what’s happening to your job and how your job is
affecting	things	on	the	cluster	or	workspace.	

Source:	Unravel	Data

Source:	Unravel	Data	

For a slow app, for instance, an APM tool might tell you if the
system as a whole is busy, slowing your app, or if there were
networking issues, slowing down all the jobs. While helpful,
they’re oriented toward monitoring and observability for Web
applications	and	middleware,	not	data-intensive	operations	
such as Spark jobs. They tend to lack information about
pipelines,	specific	jobs,	data	usage,	configuration	setting,	
and much more, as they are not designed to deal with the
complexity of modern data applications.

DataOps Platforms
To	sum	up,	there	are	several	types	of	existing	tools:

• DIY with Spark logs. Spark keeps a variety of logs, and
you can parse them, in a do it yourself (DIY) fashion, to
help	solve	problems.	But	this	lacks	critical	infrastructure,	
container, and other metrics.

• Open source tools. Spark UI comes with Spark itself,
and there are other Spark tools from the open source
community.	But	these	lack	infrastructure,	configuration	and	
other information. They also do not help connect together a
full pipeline view, as you need if you are using technologies
such as Kafka to bring data in.

• Platform-specific tools. The platforms that Spark
runs	on	-	notably	Cloudera	platforms,	Amazon	EMR,	and	
Databricks	-	each	have	platform-specific	tools	that	help	
with	Spark	troubleshooting.	But	these	lack	application-level	
information and are best used for troubleshooting platform
services.

• Application performance monitoring (APM) tools.
APM tools monitor the interactions of applications with
their environment, and can help with troubleshooting and
even	with	preventing	problems.	But	the	applications	these	
APM tools are built for are technologies such as .NET, Java,
and	Ruby,	not	technologies	that	work	with	data-intensive	
applications such as Spark.

• DataOps platforms. DataOps – applying Agile principles
to both writing and running Spark, and other big data jobs
– is catching on, and new platforms are emerging to embody
these principles.

Each tool in this plethora of tools takes in and processes
different,	but	overlapping,	data	sets.	No	one	tool	provides	full	
visibility, and even if you use one or more tools of each type,
full visibility is still lacking.

You need expertise in each tool to get the most out of that tool.
But	the	most	important	work	takes	place	in	the	expert	user’s	
head:	spotting	a	clue	in	one	tool,	which	sends	you	looking	at	
specific	log	entries	and	firing	up	other	tools,	to	come	up	with	
a hypothesis as to the problem. You then have to try out the
potential solution, often through several iterations of trial
and error, before arriving at a “good enough” answer to the
problem.

Or,	you	might	pursue	two	tried	and	trusted,	but	ineffective,	
“solutions”:	ratcheting	up	resources	and	retrying	the	job	until	
it works, either due to the increased resources or by luck; or
simply giving up, which our customers tell us they often had to
do before they started using Unravel Data.

The situation is much worse in the kind of hybrid data
clouds that organizations use today. To troubleshoot on each
platform, you need expertise in the toolset for that platform,
and	all	the	others.	(Since	jobs	often	have	cross-platform	
interdependencies, and the same team has to support multiple
platforms.)	In	addition,	when	you	find	a	solution	for	a	problem	
on one platform, you should apply what you’ve learned on all
platforms,	taking	into	account	their	differences.	In	addition,	
you	have	issues	that	are	inherently	multi-platform,	such	as	
moving jobs from one platform to a platform that is better,
faster, or cheaper for a given job. Taking on all this with the
current, fragmented, and incomplete toolsets available is a
mind-numbing	prospect.	

The biggest need is for a platform that integrates the
capabilities	from	several	existing	tools,	performing	a	five-step	
process:

1. Ingest all of the data used by the tools above, plus
additional,	application-specific	and	pipeline	data.	

2. Integrate all of this data into an internal model of the
current environment, including pipelines.

3. Provide live access to the model.

4. Continually store model data in an internally maintained
history.

5. Correlate information across the ingested data sets, the
current, “live” model, and the stored historical background,
to derive insights and make recommendations to the user.

This tool must also provide the user with the ability to put
“triggers” onto current processes that can trigger either alerts
or automatic actions. In essence, the tool’s inbuilt intelligence
and the user are then working together to make the right
things happen at the right time.

A simple example of how such a platform can help is by
keeping	information	per	pipeline,	not	just	per	job	-	then	
spotting, and automatically letting you know, when the
pipeline suddenly starts running slower than it had previously.
The platform will also make recommendations as to how you
can solve the problem. All this lets you take any needed action
before the job is delayed

© Unravel. All rights reserved. Unravel and the Unravel logo are registered trademarks
of Unravel. All other trademarks are the property of their respective owners.

unraveldata.com | hello@unraveldata.com

Conclusion
In this Part 2 guide, we’ve taken a whirlwind tour of tools
used to troubleshoot Spark applications. Most tools provide
one or more pieces of the puzzle, but none of them – nor any
combination of them – is a holistic solution.

As mentioned in Part 1 of this guide, Unravel customers can
easily	spot	and	fix	over-allocation	and	inefficiencies,	using	
job-level	insights.	Developers	can	check	a	job	for	stability	and	
efficiency	even	before	putting	it	into	production.	

Unravel	Data,	the	solution	our	company	offers,	is	the	
leading platform for DataOps. In Troubleshooting Spark
Applications, Part 3: Solutions, we will describe in detail
how Unravel Data compares to the tools described here. We
will show how it helps you prevent and repair issues at the job,
pipeline, and cluster levels, while also helping with additional
challenges such as cost optimization, SLA adherence, and
cloud migration.

You	may	be	fine	with	the	tools	you	already	have,	along	with	any	
custom	work	you	have	done	in-house.	But	if	you	think	there’s	
room for improvement in how you troubleshoot Spark jobs,
and manage Spark and related technologies, you may want to
check out Part 3.

We hope you have enjoyed, and learned from, reading this
guide. If you would like to know more about Unravel Data now,
you can download a free trial or contact Unravel.

http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/

