
Troubleshooting 
Spark Applications

PART 2: FIVE TYPES OF SOLUTIONS



Job-Level Challenges
1. Executor and core allocation

2. Memory allocation

3.	Data	skew/small	files

4. Pipeline optimization

5. Finding out whether a job  
is optimized

Cluster-Level Challenges
6. Resource allocation

7. Observability

8. Data partitioning vs. SQL 
queries/inefficiency

9. Use of auto-scaling

10. Troubleshooting

Impacts: Resources for a given job (at the cluster level) or 
across	clusters	tend	to	be	significantly	under-allocated	(causes	
crashes,	hurting	business	results)	or	over-allocated	(wastes	
resources and can cause other jobs to crash, both of which 
hurt business results). 

Note: This guide applies to running Spark jobs on any 
platform, including Cloudera platforms; cloud vendor-specific 
platforms – Amazon EMR, Microsoft HDInsight, Microsoft 
Synapse, Google DataProc; Databricks, which is on all 
three major public cloud providers; and Apache Spark on 
Kubernetes, which runs on nearly all platforms, including  
on-premises and cloud. 

Introduction
Spark	is	known	for	being	extremely	difficult	to	debug.	But	this	
is not all Spark’s fault. Problems in running a Spark job can be 
the result of problems with the infrastructure Spark is running 
on,	inappropriate	configuration	of	Spark,	Spark	issues,	the	
currently running Spark job, other Spark jobs running at the 
same	time	-	or	interactions	among	these	layers.	But	Spark	jobs	
are very important to the success of the business; when a job 
crashes, or runs slowly, or contributes to a big increase in the 
bill	from	your	cloud	provider,	you	have	no	choice	but	to	fix	 
the problem. 

Widely used tools generally focus on part of the environment 
– the Spark job, infrastructure, the network layer, etc. These 
tools	don’t	present	a	holistic	view.	But	that’s	just	what	you	
need to truly solve problems. (You also need the holistic view 
when you’re creating the Spark job, and as a check before you 
start	running	it,	to	help	you	avoid	having	problems	in	the	first	
place.	But	that’s	another	story.)	

In this guide, Part 2 in a series, we’ll show ten major tools that 
people use for Spark troubleshooting. We’ll show what they do 
well,	and	where	they	fall	short.	In	Part	3,	the	final	piece,	we’ll	
introduce Unravel Data, which makes solving many of these 
problems easier. 

What’s the Problem(s)?
The problems we mentioned in Part 1 of this series have many 
potential solutions. The methods people usually use to try to 
solve them often derive from that person’s role on the data 
team. The person who gets called when a Spark job crashes, 
such as the job’s developer, is likely to look at the Spark job. 
The person who is responsible for making sure the cluster is 
healthy will look at that level. And so on. 

The following chart, from Part 1, shows the most common 
job-level	and	cluster-level	challenges	that	data	teams	face	in	
successfully running Spark jobs. 

In this guide, we highlight five types of solutions that 
people use – often in various combination – to solve problems 
with Spark jobs

1. Spark UI

2. Spark logs

3. Platform-level tools such as Cloudera Manager, the 
Amazon EMR UI, Cloudwatch, the Databricks UI, 
and Ganglia

4. APM tools such as Cisco AppDynamics, Datadog, 
and Dynatrace 

5. DataOps platforms such as Unravel Data

As an example of solving problems of this type, let’s look at the 
problem of an application that’s running too slowly – a very 
common Spark problem, that may be caused by one or more 
of the issues listed in the chart. Here. we’ll look at how existing 
tools might be used to try to solve it. 

Note: Many of the observations and images in this guide 
originated in the July 2021 presentation, Beyond	Observability:	
Accelerate Performance on Databricks, by Patrick Mawyer, 
Systems Engineer at Unravel Data. We recommend this 
webinar to anyone interested in Spark troubleshooting and 
Spark performance management, whether on Databricks or on 
other platforms. 

Life as a Spark developer

https://www.brighttalk.com/webcast/17674/492826
https://www.brighttalk.com/webcast/17674/492826


Solving Problems Using Spark UI
Spark	UI	is	the	first	tool	most	data	team	members	use	when	
there’s a problem with a Spark job. It shows a snapshot of 
currently running jobs, the stages jobs are in, storage usage, 
and more. It does a good job, but is seen as having some faults. 
It	can	be	hard	to	use,	with	a	low	signal-to-noise	ratio	and	a	
long learning curve. It doesn’t tell you things like which jobs 
are taking up more or less of a cluster’s resources, nor deliver 
critical observations such as CPU, memory, and I/O usage. 

In the case of a slow Spark application, Spark UI will show you 
what the current status of that job is. You can also use Spark 
UI for past jobs, if the logs for those jobs still exist, and if they 
were	configured	to	log	events	properly.	Also,	the	Spark	history	
server tends to crash. When this is all working, it can help you 
find	out	how	long	an	application	took	to	run	in	the	past	–	you	
need to do this kind of investigative work just to determine 
what “slow” is. 

The	following	screenshot	is	for	a	Spark	1.4.1	job	with	a	two-
node cluster. It shows a Spark Streaming job that steadily uses 
more memory over time, which might cause the job to slow 
down. And the job eventually – over a matter of days – runs 
out of memory. 

A Spark streaming job that uses progressively more 
memory over time.	(Source:	Stack	Overflow)

To solve this problem, you might do several things. Here’s a 
brief list of possible solutions, and the problems they might 
cause	elsewhere:

• Increase available memory for each worker. You can 
increase the value of the spark.executor.memory variable 
to increase the memory for each worker. This will not 
necessarily speed the job up, but will defer the eventual 
crash. However, you are either taking memory away 
from other jobs in your cluster or, if you’re in the cloud, 
potentially running up the cost of the job.  

• Increase the storage fraction. You can change the value 
of spark.storage.memoryFraction, which varies from 0 to 1, 
to a higher fraction. Since the Java virtual machine (JVM) 
uses	memory	for	caching	RDDs	and	for	shuffle	memory,	
you	are	increasing	caching	memory	at	the	expense	of	shuffle	
memory.	This	will	cause	a	different	failure	if,	at	some	point,	
the	job	needs	shuffle	memory	that	you	allocated	away	at	 
this step. 

• Increase the parallelism of the job. For a Spark 
Cassandra Connector job, for example, you can change spark.
cassandra.input.split.size	to	a	smaller	value.	(It’s	a	different	
variable for other RDD types.) Increasing parallelism 
decreases the data set size for each worker, requiring 
less	memory	per	worker.	But	more	workers	means	more	
resources	used;	in	a	fixed	resources	environment,	this	takes	
resources away from other jobs; in a dynamic environment, 
such as Databricks job clusters, it directly runs up your bill. 

The point here is that everything you might do has a certain 
amount of guesswork to it, because you don’t have complete 
information. And, whichever approach you choose, you are 
putting	the	job	in	line	for	other,	different	problems,	including	
later failure, failure for other reasons, or increased cost. 
Alternatively,	your	job	may	be	fine,	but	at	the	expense	of	
other jobs that then fail, and those failures will also be hard to 
troubleshoot. 

Spark UI, showing metrics for completed tasks.  
(Source:	Unravel	Data)

Here’s a look at the Stages section of Spark UI. It gives you a 
list of metrics across executors. However, there’s no overview 
or	big	picture	view	to	help	guide	you	in	finding	problems.	And	
the tool doesn’t make recommendations to help you solve 
problems,	or	avoid	them	in	the	first	place.	

Spark UI is limited to Spark – and Spark job for example may 
have data coming in from Kafka, and run alongside other tools. 
Each of those has its own monitoring and management tools, 
or does without; Spark UI doesn’t work with them. It also lacks 
pro-active	alerting,	automatic	actions,	and	AI-driven	insights,	
all found in Unravel. 

Spark	UI	is	very	useful	for	what	it	does,	but	its	limitations	-	
and	the	limitations	of	the	other	tool	types	described	here	-	lead	
many organizations to build homegrown tools or toolsets, often 
built	on	Grafana.	These	solutions	are	resource-intensive,	hard	
to	extend,	hard	to	support,	and	hard	to	keep	up-to-date.	

A	few	individuals	and	organizations	even	offer	their	
homegrown tools as open source software for other 
organizations to use, but of course support, documentation, 
and updates are limited. Several such tools, such as Sparklint 
and DrElephant, do not support recent versions of Spark. At 
this writing, they have not had many, if any, fresh commits in 
recent months or even years. 

https://stackoverflow.com/questions/35478223/size-in-memory-under-storage-tab-of-spark-ui-showing-increase-in-ram-usage-ove


Spark Logs
Spark logs are the underlying resource for troubleshooting 
Spark jobs. Spark UI can even use Spark logs, if available, to 
rebuild a view of the Spark environment on an historical basis. 
You can use the logs related to the job’s driver and executors to 
retrospectively	find	out	what	happened	to	a	given	job,	and	even	
some information about what was going on with other jobs at 
the time. 

If you have a slow app, for instance, you can painstakingly 
assemble a picture to tell you if the slowness was in one task 
versus	the	other	by	scanning	through	multiple	log	files.	But	
answering	why	and	finding	the	root	cause	is	hard.	These	logs	
don’t have complete information about resource usage, data 
partitioning,	correct	configuration	setting	and	many	other	
factors	than	can	affect	the	performance.	ere	are	also	many	
potential issues that don’t show up in Spark logs, such as 
“noisy neighbor” or networking issues that reduce resource 
availability within your Spark environment.  

• Missing files. Governance rules and data storage 
considerations	take	files	away,	as	files	are	moved	to	
archival media or simply lost to deletion. More than one 
large	organization	deletes	files	every	90	days,	which	makes	
quarterly	summaries	very	difficult,	and	comparisons	to,	say,	
the previous year’s holiday season or tax season impossible. 

• Only Spark-specific information. Spark logs are just that 
-	logs	from	Spark.	They	don’t	include	much	information	about	
the	infrastructure	available,	resource	allocation,	configuration	
specifics,	etc.	Yet	this	information	is	vital	to	solving	a	great	
many of the problems that hamper Spark jobs. 

Because	Spark	logs	don’t	cover	infrastructure	and	related	
information,	it’s	up	to	the	operations	person	to	find	as	much	
information they can on those other important areas, then try 
to integrate it all and determine the source of the problem. 
(Which may be the result of a complex interaction among 
different	factors,	with	multiple	changes	needed	to	fix	it.)	

Platform-Level Solutions
There	are	platform-level	solutions	that	work	on	a	given	Spark	
platform, such as Cloudera Manager, the Amazon EMR UI, and 
Databricks UI. In general, these interfaces allow you to work 
at the cluster level. They tell you information about resource 
usage and the status of various services. 

If you have a slow app, for example, these tools will give you 
part of the picture you need to put together to determine 
the	actual	problem,	or	problems.	But	these	tools	do	not	
have	the	detail-level	information	in	the	tools	above,	nor	do	
they even have all the environmental information you need. 
So again, it’s up to you to decide how much time to spend 
researching, to pull all the information together, and to try 
to	determine	a	solution.	A	quick	fix	might	take	a	few	hours;	a	
comprehensive,	long-term	solution	may	take	days	of	research	
and experimentation. 

This screenshot shows Databricks UI. It gives you a solid 
overview of jobs and shows you status, cluster type, and so on. 
Like	other	platform-level	solutions,	it	doesn’t	help	you	much	
with historical runs, nor in working at the pipeline level, across 
the multiple jobs that make up the pipeline.  

Source:	Unravel	Data

Spark	logs	are	a	tremendous	resource,	and	are	always	a	go-to	
for solving problems with Spark jobs. However, if you depend 
on logs as a major component of your troubleshooting toolkit, 
several	problems	come	up,	including:	

• Access and governance difficulties. In highly secure 
environments, it can take time to get permission to access 
logs, or you may need to ask someone with the proper 
permissions	to	access	the	file	for	you.	In	some	highly	
regulated	companies,	such	as	financial	institutions,	it	can	
take hours per log to get access. 

• Multiple files. You may need to look at the logs for a 
driver	and	several	executors,	for	instance,	to	solve	job-level	
problems. And your brain is the comparison and integration 
engine that pulls the information together, makes sense of it, 
and develops insights into possible causes and solutions. 

• Voluminous files.	The	file	for	one	component	of	a	job	
can	be	very	large,	and	all	the	files	for	all	the	components	of	
a	job	can	be	huge	-	especially	for	long-running	jobs.	Again,	
you	are	the	one	who	has	to	find	and	retain	each	part	of	
the information needed, develop a complete picture of the 
problem,	and	try	different	solutions	until	one	works.	

Source:	Unravel	Data



Another monitoring tool for Spark, which is included as 
open source within Databricks, is called Ganglia. It’s largely 
complementary to Databricks UI, though it also works at the 
cluster	and,	in	particular,	at	the	node	level.	You	can	see	host-
level metrics such as CPU consumption, memory consumption, 
disk	usage,	network-level	IO	–	all	host-level	factors	that	can	
affect	the	stability	and	performance	of	your	job.	

This	can	allow	you	to	see	if	your	nodes	are	configured	
appropriately,	to	institute	manual	scaling	or	auto-scaling,	or	to	
change	instance	types.	(Though	someone	trying	to	fix	a	specific	
job	is	not	inclined	to	take	on	issues	that	affect	other	jobs,	other	
users, resource availability, and cost.) Ganglia does not have 
job-specific	insights,	nor	work	with	pipelines.	And	there	are	no	
good output options; you might be reduced to taking a screen 
snapshot to get a JPEG or PNG image of the current status. 

Platform-level	solutions	can	be	useful	for	solving	the	root	
causes	of	problems	such	as	out-of-memory	errors.	However,	
they don’t go down to the job level, leaving that to resources 
such as Spark logs and tools such as Spark UI. Therefore, to 
solve	a	problem,	you	are	often	using	platform-level	solutions	
in	combination	with	job-level	tools	–	and	again,	it’s	your	brain	
that has to do the comparisons and data integration needed to 
get a complete picture and solve the problem. 

Like	job-level	tools,	these	solutions	are	not	comprehensive,	
nor	integrated.	They	offer	snapshots,	but	not	history,	and	
they don’t make proactive recommendations. And, to solve 
a problem on Databricks, for example, you may be using 
Spark logs, Spark UI, Databricks UI, and Ganglia, along with 
Cloudwatch on AWS, or Azure Log Monitoring and Analytics. 
None of these tools integrate with the others. 

APM Tools 
There is a wide range of monitoring tools, generally known 
as Application Performance Management (APM) tools. Many 
organizations have adopted one or more tools from this 
category, though they can be expensive, and provide very 
limited metrics on Spark and other modern data technologies. 
Leading tools in this category include Datadog, Dynatrace, and 
Cisco AppDynamics.  

Source:	Unravel	Data

Support	from	the	open-source	community	is	starting	to	shift	
toward more modern observability platforms like Prometheus, 
which works well with Kubernetes. And cloud providers 
offer	their	own	solutions	–	AWS	Cloudwatch,	for	example,	
and Azure Log Monitoring and Analytics. These tools are all 
oriented toward web applications, not the backend apps used 
for analytics, AI, machine learning, and other use cases that 
are usually considered part of the big data world. They lack big 
data application and pipeline information which is essential to 
understand what’s happening to your job and how your job is 
affecting	things	on	the	cluster	or	workspace.	

Source:	Unravel	Data

Source:	Unravel	Data	

For a slow app, for instance, an APM tool might tell you if the 
system as a whole is busy, slowing your app, or if there were 
networking issues, slowing down all the jobs. While helpful, 
they’re oriented toward monitoring and observability for Web 
applications	and	middleware,	not	data-intensive	operations	
such as Spark jobs. They tend to lack information about 
pipelines,	specific	jobs,	data	usage,	configuration	setting,	
and much more, as they are not designed to deal with the 
complexity of modern data applications. 



DataOps Platforms
To	sum	up,	there	are	several	types	of	existing	tools:

• DIY with Spark logs. Spark keeps a variety of logs, and 
you can parse them, in a do it yourself (DIY) fashion, to 
help	solve	problems.	But	this	lacks	critical	infrastructure,	
container, and other metrics.

• Open source tools. Spark UI comes with Spark itself, 
and there are other Spark tools from the open source 
community.	But	these	lack	infrastructure,	configuration	and	
other information. They also do not help connect together a 
full pipeline view, as you need if you are using technologies 
such as Kafka to bring data in. 

• Platform-specific tools. The platforms that Spark 
runs	on	-	notably	Cloudera	platforms,	Amazon	EMR,	and	
Databricks	-	each	have	platform-specific	tools	that	help	
with	Spark	troubleshooting.	But	these	lack	application-level	
information and are best used for troubleshooting platform 
services. 

• Application performance monitoring (APM) tools. 
APM tools monitor the interactions of applications with 
their environment, and can help with troubleshooting and 
even	with	preventing	problems.	But	the	applications	these	
APM tools are built for are technologies such as .NET, Java, 
and	Ruby,	not	technologies	that	work	with	data-intensive	
applications such as Spark.  

• DataOps platforms. DataOps – applying Agile principles 
to both writing and running Spark, and other big data jobs 
– is catching on, and new platforms are emerging to embody 
these principles. 

Each tool in this plethora of tools takes in and processes 
different,	but	overlapping,	data	sets.	No	one	tool	provides	full	
visibility, and even if you use one or more tools of each type, 
full visibility is still lacking. 

You need expertise in each tool to get the most out of that tool. 
But	the	most	important	work	takes	place	in	the	expert	user’s	
head:	spotting	a	clue	in	one	tool,	which	sends	you	looking	at	
specific	log	entries	and	firing	up	other	tools,	to	come	up	with	
a hypothesis as to the problem. You then have to try out the 
potential solution, often through several iterations of trial 
and error, before arriving at a “good enough” answer to the 
problem. 

Or,	you	might	pursue	two	tried	and	trusted,	but	ineffective,	
“solutions”:	ratcheting	up	resources	and	retrying	the	job	until	
it works, either due to the increased resources or by luck; or 
simply giving up, which our customers tell us they often had to 
do before they started using Unravel Data. 

The situation is much worse in the kind of hybrid data 
clouds that organizations use today. To troubleshoot on each 
platform, you need expertise in the toolset for that platform, 
and	all	the	others.	(Since	jobs	often	have	cross-platform	
interdependencies, and the same team has to support multiple 
platforms.)	In	addition,	when	you	find	a	solution	for	a	problem	
on one platform, you should apply what you’ve learned on all 
platforms,	taking	into	account	their	differences.	In	addition,	
you	have	issues	that	are	inherently	multi-platform,	such	as	
moving jobs from one platform to a platform that is better, 
faster, or cheaper for a given job. Taking on all this with the 
current, fragmented, and incomplete toolsets available is a 
mind-numbing	prospect.	

The biggest need is for a platform that integrates the 
capabilities	from	several	existing	tools,	performing	a	five-step	
process:

1. Ingest all of the data used by the tools above, plus 
additional,	application-specific	and	pipeline	data.	

2. Integrate all of this data into an internal model of the 
current environment, including pipelines.

3. Provide live access to the model.

4. Continually store model data in an internally maintained 
history. 

5. Correlate information across the ingested data sets, the 
current, “live” model, and the stored historical background, 
to derive insights and make recommendations to the user. 

This tool must also provide the user with the ability to put 
“triggers” onto current processes that can trigger either alerts 
or automatic actions. In essence, the tool’s inbuilt intelligence 
and the user are then working together to make the right 
things happen at the right time. 

A simple example of how such a platform can help is by 
keeping	information	per	pipeline,	not	just	per	job	-	then	
spotting, and automatically letting you know, when the 
pipeline suddenly starts running slower than it had previously. 
The platform will also make recommendations as to how you 
can solve the problem. All this lets you take any needed action 
before the job is delayed
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Conclusion
In this Part 2 guide, we’ve taken a whirlwind tour of tools 
used to troubleshoot Spark applications. Most tools provide 
one or more pieces of the puzzle, but none of them – nor any 
combination of them – is a holistic solution. 

As mentioned in Part 1 of this guide, Unravel customers can 
easily	spot	and	fix	over-allocation	and	inefficiencies,	using	
job-level	insights.	Developers	can	check	a	job	for	stability	and	
efficiency	even	before	putting	it	into	production.	

Unravel	Data,	the	solution	our	company	offers,	is	the	
leading platform for DataOps. In Troubleshooting Spark 
Applications, Part 3: Solutions, we will describe in detail 
how Unravel Data compares to the tools described here. We 
will show how it helps you prevent and repair issues at the job, 
pipeline, and cluster levels, while also helping with additional 
challenges such as cost optimization, SLA adherence, and 
cloud migration. 

You	may	be	fine	with	the	tools	you	already	have,	along	with	any	
custom	work	you	have	done	in-house.	But	if	you	think	there’s	
room for improvement in how you troubleshoot Spark jobs, 
and manage Spark and related technologies, you may want to 
check out Part 3. 

We hope you have enjoyed, and learned from, reading this 
guide. If you would like to know more about Unravel Data now, 
you can download a free trial or contact Unravel.

http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/

