unravel

Troubleshooting
Spark Solutions

PART 3: THE ANSWER IS UNRAVEL

Current practice for Spark troubleshooting is messy. Part

of this is due to Spark’s very popularity; it’s widely used on
platforms as varied as open source Apache Spark, on all
platforms; Cloudera’s Hadoop offerings (on-premises and
in the cloud); Amazon EMR, Azure Synapse, and Google
Dataproc; and Databricks, which runs on all three public
clouds. (Which means you have to be able to address Spark’s
interaction with all of these very different environments.)

Because Spark does so much, on so many platforms, “Spark
troubleshooting” covers a wide range of problems - jobs that
halt; pipelines that fail to deliver, so you have to find the issue;
performance that’s too slow; or using too many resources,
either in the data center (where your clusters can suck up

all available resources) or in the cloud (where resources are
always available, but your costs rise, or even skyrocket.)

Where Are the Issues — and the
Solutions?

Problems in running Spark jobs occur at the job and pipeline
levels, as well as at the cluster level, as described in Part 1 of
this three-part series: the top ten problems you encounter in
working with Spark. And there are several solutions that can
help, as we described in Part 2: five types of solutions used for
Spark troubleshooting. (You can also see our recent webinar,
Troubleshooting Apache Spark, for an overview and demo.)

Tools Problem Location Add.e.d .
Capabilities
Add’l sensors;
history; correlation;
Job Pipeline | Cluster | Al-powered
Level Level Level recommendations;
AutoActions;
cloud migration
Spark UI, logs v X X X
Orchestration % v % %
tools
Cluster x % v %
mgmt. tools
Unravel
Data v v v v

Table: What each level of tool shows you — and
what’s missing

Existing tools provide incomplete, siloed information. We
created Unravel Data as a go-to DataOps platform that
includes much of the best of existing tools. In this Part 3 of the
series we'll give examples of problems at the job, pipeline, and
cluster levels, and show how to solve them with Unravel Data.
We'll also briefly describe how Unravel Data helps you prevent
problems, providing Al-powered, proactive recommendations.

The Unravel Data platform gathers more information than
existing tools by adding its own sensors to your stack, and by
using all previously existing metrics, traces, logs, and available
API calls. It gathers this robust information set together and
correlates pipeline information, for example, across jobs.

The types of issues that Unravel covers are, broadly

speaking: fixing bottlenecks; meeting and beating SLAs; cost
optimization; fixing failures; and addressing slowdowns,
helping you improve performance. Within each of these broad
areas, Unravel has the ability to spot hundreds of different
types of factors contributing to an issue. These contributing
factors include data skew, bad joins, load imbalance,
incorrectly sized containers, poor configuration settings, and
poorly written code, as well as a variety of other issues.

Fixing Job-Level Problems with
Unravel

Here’s an example of a Spark job or application run that’s
monitored by Unravel.

In Unravel, you first see automatic recommendations, analysis,
and insights for any given job. This allows users to quickly
understand what the problem is, why it happened, and how

to resolve it. In the example below, resolving the problem will
take about a minute.

10j0s/2021

Let’s dive into the insights for an application run, as shown below.

%+ App Summary » Attempt-1

DURATION DATA /O STARTTIME END TIME JOBS COUNT STAGES COUNT

15m 25s 33.28 KB 10/05/2021 10/05/2021 14 7
> 03:57:24 04:12:49

== -

nalysis | resources | ernors Configuration | Logs

© @A 1 Insight to make this app faster
[>] e 1 distinct query affected ({]

(] 1 Insight to make this app meet SLA
°

A\ Al of the below settings should be applied together.

S Parameter Current Value

spark.executor.memory 4294967296 3787636736

spark.executor.cores 1 2

https://www.brighttalk.com/webcast/17674/502829/unravel-optimize-webinar-series-troubleshooting-apache-spark

You can see here that Unravel has spotted bottlenecks,
and also room for improving the performance of this app.
It has narrowed down what the particular problem is with
this application and how to resolve it. In this case, it has
recommended to double the number of executors and
reduce the memory for each executor, which will improve
performance by about 30%, meeting the SLA.

Additionally, Unravel has also spotted some bad joins which
are slowing this application down, as shown below.

DURATION DATAI/O START TIME END TIVE JOBS COUNT STAGES COUNT
15m 25s 33.28KB 10/05/2021 10/05/2021 14 17

— 03:57:24 04:12:49

Analysis ‘ Resources ‘ Errors ‘ Configuration Logs Tags Program »

(V] 1 Insight to make this app faster
- w0 1 distinct query affected (EZTTEID
© auery2 see
A\ Inefficient join condition detected with join condition id#12L = id#2L

Parameter Value

Tables involved

Number of rows of left relation -1
Number of rows of right relation A
Join output rows 40000000000

% The total number of joined rows are {-40,000,000,000.00} times more than maximum of left & right child

This indicates join keys (id#12L = id#2L) are of low cardinality. Check if extra conditions can be applied to flter more rows

© @I 1 Insight to make this app meet SLA
© @STEETS 1 insight to make this app resource/cost efficient

In addition to helping speed this application up, Unravel is
also recommending resource settings which will lower the cost
of running this application, as shown below - reductions of
roughly 50% in executor memory and driver memory, cutting
out half the total memory cost. Again, Unravel is delivering
pinpoint recommendations. Users avoid a lengthy trial-and-
error exercise; instead, they can solve the problem in about

a minute.

2+ App Summary » Attempt-1

DURATION DATAY/O START TIME END TIME JOBS COUNT STAGES COUNT
15m 25s 33.28KB 10/05/2021 10/05/2021 14 17
— 03:57:24 04:12:49

Analysis ‘ Resources Errors Configuration Program »|

(>} 1 Insight to make this app faster
(>} 1 Insight to make this app meet SLA
© @EEEETI 1 insight to make this app resource/cost efficient
°

A\ Too much memory resources were allocated. Please use suggested settings below.

£ Parameter Current Value Recommended Value
spark executormemory 4294967296 2272582041

spark drivermemory 2147483648 1452274483

Unravel can also help with jobs or applications that just didn’t
work and failed. It uses a similar approach as above to help
data engineers and operators get to the root cause of the
problem and resolve it quickly.

wnravel Seark: spplication 1633

st |TOMUAINBCYBN | Quoue: ottt

sy <« App Summary » Attempt-2

St 100021207105 16:56 | Endi10/U2/2021 051809 | Duraton:2 min 2 s - . J—— s pas

et 1m2s o8 10/02/2021 10/02/2020 1
— 18

© ez e
°
R | o G e e e

[« App Summary » Attempt-2

DURATION DATAIVO STARTTIVE ENDTIME JOBS COUNT STAGES COUNT
m2s 0B 10/02/2021 10/02/2021 1 1
— 0317:06 0318:09

Resources Configuation ogs Program Timings

© @I 1 nsioht for faiure analysis
LY exccuon paiep wimn ourormemony earon

A 3exec application JavaOu

2 H VR I for fexecutor2, exec

utor8, executor-1] on the Resource Usage tab

Ifapplicationis mode, e the JVM hesp size via

roperty

© @I 1 nsioht to make this app resourcecost eficient
°

In this example, the job or application failed because of an
out of memory exception error. Unravel surfaces this problem
instantly and pinpoints exactly where the problem is.

For further information, and to support investigation, Unravel
provides distilled and easy-to-access logs and error messages,
so users and data engineers have all the relevant information
they need at hand.

And once data teams start using Unravel, they can do
everything with more confidence. For instance, if they try to
save money by keeping resource allocations low, but overdo
that a little bit, they’ll get an out-of-memory error. Previously,
it might have taken many hours to resolve the error, so the
team might not risk tight allocations. But fixing the error only
takes a couple of minutes with Unravel, so the data team can
cut costs effectively.

Examples of logs that Unravel provides for easy access and
error message screens follow.

ouRTion onavo [E— ot r— sTaces couwr
m2s oB 10/02/2021 10/02/2021 1 1
— 03:17:06 03:18:09

Anaysis ——— Configuraton | Tos Program Timings
ToTAL: @ o
© exccuor2 () @
O wver O O O
© excuor1) @

10/02/21

© m-dagnostics @)
DT mdingnostics

DURATION DATAI/O START TIME ENDTIME J0BS COUNT STAGES COUNT

m2s 0B 10/02/2021 10/02/2021 1 1

03:17:06 03:18:09

© dver
© oxccutor2

r3

Unravel strives to help users solve their problems with a click
of a button. At the same time, Unravel provides a great deal of
detail about each job and application, including displaying code
execution, displaying DAGs, showing resource usage, tracking
task execution, and more. This allows users to drill down to
whatever depth needed to understand and solve the problem.

wravel seark

Task stage metrics in Unravel Data

As another example, this screen shows details for task stage
information:

» Left-hand side: task metrics. This includes the job stage task
metrics of Spark, much like what you would see from Spark
UL However, Unravel keeps history on this information;
stores critical log information for easy access; presents
multiple logs coherently; and ties problems to specific log
locations.

« Right-hand side: holistic KPIs. Information such as job start
and end time, run-time durations, I/O in KB — and whether
each job succeeded or failed.

Data Pipeline Problems

The tools people use for troubleshooting Spark jobs tend to
focus on one level of the stack or another — the networking level,
the cluster level, or the job level, for instance. None of these
approaches helps much with Spark pipelines. A pipeline is likely
to have many stages, involving many separate Spark jobs.

Here’s an example. One Spark job can handle data ingest; a
second job, transformation; a third job may send the data to
Kafka; and a final job can be reading the data from Kafka and
then putting it into a distributed store, like Amazon S3 or HDFS.

DAGs

Schedule LastRun Recent Tasks. Actions Links

..... 010210011 0 () viclo

»cm
-y 2020102, 14087 rco
TN »co
= rca
Hone (0] co

sy 20201028, 210737 relo -

Airflow being used to create and organize a Spark pipeline.

The two most important orchestration tools are Oozie, which
tends to be used with on-premises Hadoop, and Airflow, which
is used more often in the cloud. They will help you create and
manage a pipeline; and, when the pipeline breaks down, they’ll
show you which job the problem occurred in.

But orchestration tools don’t help you drill down into that

job; that’s up to you. You have to find the specific Spark run
where the failure occurred. You have to use other tools, such as
Spark UT or logs, and look at timestamps, using your detailed
knowledge of each job to cross-correlate and, hopefully, find
the issue. As you see, just finding the problem is messy, intense,
time-consuming, expert work; fixing it is even more effort.

Oozie also gives you a big-picture view of pipelines.

Unravel, by contrast, provides pipeline-specific views that first
connect all the components - Spark, and everything else in
your modern data stack - and runs of the data pipeline together
in one place. Unravel then allows you to drill down into the
slow, failed, or inefficient job, identify the actual problem, and
fix it quickly. And it gets even better; Unravel’s AI-powered
recommendations will help you prevent a pipeline problem
from even happening in the first place.

You didn’t have to look at Spark UL, plus dig through Spark
logs, then check Oozie or Airflow. All the information is

correlated into one view - a single pane of glass.

This view shows details for several jobs. In the graphic, each
line has an instance run. The longest duration shown here is
three minutes and 1 second. If the SLA is “under two minutes,”
then the job failed to meet its SLA. (Because some jobs run
scores or hundreds of times a day, missing an SLA by more
than a minute - especially when that means a roughly 50%
overshoot against the SLA - can become a very big deal.)

Unravel then provides history and correlated information,
using all of this to deliver Al-powered recommendations. You
can also set AutoActions against a wide variety of conditions
and get cloud migration support.

Cluster Issues

Resources are allocated at the cluster level. The screenshot
shows ResourceManager (RM), which tracks resources,
schedules jobs such as Spark jobs, and so on. You can see the
virtual machines assigned to your Spark jobs, what resources
they’re using, and status - started or not started, completed or
not completed.

Show 20 ¢ entries

B © Usero Name o ABIGHON o, o Aspledton Sarfime FnenTime g

fority ©

¢ FinalStatus °

application 1500262180460 0004 hadoop HIVE- TEZ
d7240280-
02d2-418b- 114549 +0800

roothadoop O MonJul MonJul17 FINISHED SUCCEEDED
17 11:46:09

8a5c-

fe2lo16e2463 2017

application 1500262180460 0003 hadoop HIVE- TEz roothadoop O MonJul MonJul17 FINISHED SUCCEEDED M|
4e13fe02- 17 11:45:54
8a01-4a2c- 114521

abe- +0800 2017

b299846315ef 2017

application 1500262180460 0002 hadoop HIVE- & roothadoop 0O MonJul Mon Jul 17 FINISHED SUCCEEDED
3e 17 11:45:25

at
application 1500262180460 0001 hadoop Spark Pi SPARK roothadoop O MonJul Mon Jul 17 FINISHED SUCCEEDED
1131:10

2017

‘Showing 110 4 of 4 entries

Apache Hadoop ResourceManager

The first problem is that there’s no way to see what actual
resources your job is consuming. Nor can you see whether
those resources are being used efficiently or not. So you can
be over-allocated, wasting resources - or running very close to
your resources limit, with the job likely to crash in the future.

Nor can you compare past to present; ResourceManager
does not have history in it. Now you can pull logs at this
level — the YARN level — to look at what was happening, but
that’s aggregated data, not the detail you’re looking for. You
also can’t dig into potential conflicts with neighbors sharing
resources in the cluster.

You can use site tools like Cloudwatch, Cloudera Manager or
Ambari. They provide a useful holistic view, at the cluster level
— total CPU consumption, disk I/O consumption, and network
I/0 consumption. But, as with some of the pipeline views we
discussed above, you can’t take this down to the job level.

You may have a spike in cluster disk I/O. Was it your job that
started that, or someone else’s? Again, you're looking at Spark
UL, you're looking at Spark logs, hoping maybe to get a bit
lucky and figure out what the problem is. Troubleshooting
becomes a huge intellectual and practical challenge. And this is
all taking away from time making your environment better or
doing new projects that move the business forward.

It’s common for a job to be submitted, then held because the
cluster’s resources are already tied up. The bigger the job, the
more likely it will have to wait. But existing tools make it hard
to see how busy the cluster is. So later, when the job that had
to wait finishes late, no one knows why that happened.

A cluster-level view showing vCores, specific users,
and a specific queue

By contrast, in this screenshot from Unravel, you see cluster-
level details. This job was in the data security queue, and it
was submitted on July 5th, around 7:30pm. These two rows
show vCores — overall consumption on this Hadoop cluster’s
memory. The orange line shows maximum usage, and the blue

line shows what’s available.

At this point in time, usage (blue line) did not exceed
available resources (orange line)

You can also get more granular and look at a specific user. You
can go to the date and time that the job was launched and see
what was running at that point in time. And voila — there were
actually enough resources available.

So, it’s not a cluster-level problem; you need to examine the
job itself. And Unravel, as we’ve described, gives you the tools
to do that. You can see that we’ve eliminated a whole class of
potential problems for this slowdown — not in hours or days,
and with no trial-and-error experimentation needed. We just
clicked around in Unravel for a few minutes.

Unravel Data:
An Ounce of Prevention

For the issues above, such as slowdowns, failures, missed SLAs
or just expensive runs, a developer would have to be looking

at YARN logs, ResourceManager logs, and Spark logs, possibly
spending hours figuring it all out. Within Unravel, though,
they would not need to jump between all those screens; they
would get all the information in one place. They can then use
Unravel’s built-in intelligence to automatically root-cause the
problem and resolve it.

Unravel Data solves the problem of Spark troubleshooting at all
three levels — at the job, pipeline, and cluster levels. It handles
the correlation problem — tying together cluster, pipeline, and
job information — for you. Then it uses that information to

give unique views at every level of your environment. Unravel
makes Al-powered recommendations to help you head off
problems; allows you to create AutoActions that execute on
triggers you define; and makes troubleshooting much easier.

Unravel solves systemic problems with Spark. For instance,
Spark tends to cause overallocation: assigning very large
amounts of resources to every run of a Spark job, to try to avoid
crashes on any run of that job over time. The biggest datasets
or most congested conditions set the tone for all runs of the job
or pipeline. But with Unravel, you can flexibly right-size the
allocation of resources.

Unravel frees up your experts to do more productive work. And
Unravel often enables newer and more junior-level people to
be as effective as an expert would have been, using the ability
to drill down, and the proactive insights and recommendations
that Unravel provides.

Unravel even feeds back into software development. Once you
find problems, you can work with the development team to
implement new best practices, heading off problems before
they appear. Unravel will then quickly tell you which new or

revised jobs are making the grade.

Unravel

sensors API calls

Metrics Traces Logs

Correlation, ML, Al

Job-level recommendations and troubleshooting support

Correlation, ML, Al

Pipeline-level recommendations and troubleshooting support

Correlation, ML, Al

Cluster-level recommendations and troubleshooting support

« Improved resource use ~50%

« Less troubleshooting work ~75%
« Lower costs ~50%

« Greater staff efficiency ~33%

The Unravel advantage — on-premises and all public clouds

Another hidden virtue of Unravel is: it serves as a single
source of truth for different roles in the organization. If the
developer, or an operations person, finds a problem, then they
can use Unravel to highlight just what the issue is, and how to
fix it. And not only how to fix it this time, for this job, but to
reduce the incidence of that class of problem across the whole
organization. The same goes for business intelligence (BI)

tool users such as analysts, data scientists, everyone. Unravel
gives you a kind of X-ray of problems, so you can cooperate in
solving them.

With Unravel, you have the job history, the cluster history, and
the interaction with the environment as a whole — whether it
be on-premises, or using Databricks or native services on AWS,
Azure, or Google Cloud Platform. In most cases you don’t have
to try to remember, or discover, what tools you might have
available in a given environment. You just click around in
Unravel, largely the same way in any environment, and solve
your problem.

Between the problems you avoid, and your new-found ability
to quickly solve the problems that do arise, you can start
meeting your SLAs in a resource-efficient manner. You can
create your jobs, run them, and be a rockstar Spark developer
or operations person within your organization.

Conclusion

In this Part 3 of the guide, we’ve given you a wide-ranging tour
of how you can use Unravel Data to troubleshoot Spark jobs —
on-premises and in the cloud, at the job, pipeline, and cluster
levels, working across all levels, efficiently, from a single

pane of glass.

In Troubleshooting Spark Applications, Part 1:

Top Ten Spark Difficulties, we described the ten biggest
challenges for troubleshooting Spark jobs across levels.

And in Spark Troubleshooting, Part 2: Five Types of
Solutions, we describe the major categories of tools, several
of which we touched on here.

This Part 3 of the guide builds on the other two to show you
how to address the problems we described, and more, with a
single tool that does the best of what single-purpose tools do,
and more — our DataOps platform, Unravel Data.

We hope you have enjoyed, and learned from, reading this
series of guides. If you would like to know more about Unravel
Data now, you can download a free trial or contact Unravel.

mrcvel unraveldata.com | hello@unraveldata.com © Unravel. All rigl Jn and the Unravel I
of Unravel. All other trademark the property of the

http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/

