


Current practice for Spark troubleshooting is messy. Part 
of this is due to Spark’s very popularity; it’s widely used on 
platforms as varied as open source Apache Spark, on all 
platforms; Cloudera’s Hadoop offerings (on-premises and 
in the cloud); Amazon EMR, Azure Synapse, and Google 
Dataproc; and Databricks, which runs on all three public 
clouds. (Which means you have to be able to address Spark’s 
interaction with all of these very different environments.) 

Because Spark does so much, on so many platforms, “Spark 
troubleshooting” covers a wide range of problems - jobs that 
halt; pipelines that fail to deliver, so you have to find the issue; 
performance that’s too slow; or using too many resources, 
either in the data center (where your clusters can suck up 
all available resources) or in the cloud (where resources are 
always available, but your costs rise, or even skyrocket.) 

Where Are the Issues – and the 
Solutions?
Problems in running Spark jobs occur at the job and pipeline 
levels, as well as at the cluster level, as described in Part 1 of 
this three-part series: the top ten problems you encounter in 
working with Spark. And there are several solutions that can 
help, as we described in Part 2: five types of solutions used for 
Spark troubleshooting. (You can also see our recent webinar, 
Troubleshooting Apache Spark, for an overview and demo.) 

Tools Problem Location Added 
Capabilities

Job 
Level

Pipeline 
Level

Cluster 
Level

Add’l sensors; 
history; correlation; 
AI-powered 
recommendations; 
AutoActions;  
cloud migration

Spark UI, logs ✓ ✕ ✕ ✕

Orchestration 
tools ✕ ✓ ✕ ✕

Cluster 
mgmt. tools ✕ ✕ ✓ ✕

Unravel  
Data ✓ ✓ ✓ ✓

Table: What each level of tool shows you – and 
what’s missing

Existing tools provide incomplete, siloed information. We 
created Unravel Data as a go-to DataOps platform that 
includes much of the best of existing tools. In this Part 3 of the 
series we’ll give examples of problems at the job, pipeline, and 
cluster levels, and show how to solve them with Unravel Data. 
We’ll also briefly describe how Unravel Data helps you prevent 
problems, providing AI-powered, proactive recommendations.  

The Unravel Data platform gathers more information than 
existing tools by adding its own sensors to your stack, and by 
using all previously existing metrics, traces, logs, and available 
API calls. It gathers this robust information set together and 
correlates pipeline information, for example, across jobs. 

The types of issues that Unravel covers are, broadly 
speaking: fixing bottlenecks; meeting and beating SLAs; cost 
optimization; fixing failures; and addressing slowdowns, 
helping you improve performance. Within each of these broad 
areas, Unravel has the ability to spot hundreds of different 
types of factors contributing to an issue. These contributing 
factors include data skew, bad joins, load imbalance, 
incorrectly sized containers, poor configuration settings, and 
poorly written code, as well as a variety of other issues. 

Fixing Job-Level Problems with 
Unravel
Here’s an example of a Spark job or application run that’s 
monitored by Unravel. 

In Unravel, you first see automatic recommendations, analysis, 
and insights for any given job. This allows users to quickly 
understand what the problem is, why it happened, and how 
to resolve it. In the example below, resolving the problem will 
take about a minute. 

Let’s dive into the insights for an application run, as shown below.

https://www.brighttalk.com/webcast/17674/502829/unravel-optimize-webinar-series-troubleshooting-apache-spark


You can see here that Unravel has spotted bottlenecks, 
and also room for improving the performance of this app. 
It has narrowed down what the particular problem is with 
this application and how to resolve it. In this case, it has 
recommended to double the number of executors and 
reduce the memory for each executor, which will improve 
performance by about 30%, meeting the SLA. 

Additionally, Unravel has also spotted some bad joins which 
are slowing this application down, as shown below. 

In addition to helping speed this application up, Unravel is 
also recommending resource settings which will lower the cost 
of running this application, as shown below - reductions of 
roughly 50% in executor memory and driver memory, cutting 
out half the total memory cost. Again, Unravel is delivering 
pinpoint recommendations. Users avoid a lengthy trial-and-
error exercise; instead, they can solve the problem in about  
a minute. 

Unravel can also help with jobs or applications that just didn’t 
work and failed. It uses a similar approach as above to help 
data engineers and operators get to the root cause of the 
problem and resolve it quickly. 

In this example, the job or application failed because of an 
out of memory exception error. Unravel surfaces this problem 
instantly and pinpoints exactly where the problem is. 

For further information, and to support investigation, Unravel 
provides distilled and easy-to-access logs and error messages, 
so users and data engineers have all the relevant information 
they need at hand. 

And once data teams start using Unravel, they can do 
everything with more confidence. For instance, if they try to 
save money by keeping resource allocations low, but overdo 
that a little bit, they’ll get an out-of-memory error. Previously, 
it might have taken many hours to resolve the error, so the 
team might not risk tight allocations. But fixing the error only 
takes a couple of minutes with Unravel, so the data team can 
cut costs effectively. 

Examples of logs that Unravel provides for easy access and 
error message screens follow.  



Unravel strives to help users solve their problems with a click 
of a button. At the same time, Unravel provides a great deal of 
detail about each job and application, including displaying code 
execution, displaying DAGs, showing resource usage, tracking 
task execution, and more. This allows users to drill down to 
whatever depth needed to understand and solve the problem. 

Task stage metrics in Unravel Data

As another example, this screen shows details for task stage 
information:

•	 Left-hand side: task metrics. This includes the job stage task 
metrics of Spark, much like what you would see from Spark 
UI. However, Unravel keeps history on this information; 
stores critical log information for easy access; presents 
multiple logs coherently; and ties problems to specific log 
locations. 

•	 Right-hand side: holistic KPIs. Information such as job start 
and end time, run-time durations, I/O in KB – and whether 
each job succeeded or failed. 

Data Pipeline Problems
The tools people use for troubleshooting Spark jobs tend to 
focus on one level of the stack or another – the networking level, 
the cluster level, or the job level, for instance. None of these 
approaches helps much with Spark pipelines. A pipeline is likely 
to have many stages, involving many separate Spark jobs. 

Here’s an example. One Spark job can handle data ingest; a 
second job, transformation; a third job may send the data to 
Kafka; and a final job can be reading the data from Kafka and 
then putting it into a distributed store, like Amazon S3 or HDFS. 

Airflow being used to create and organize a Spark pipeline.

The two most important orchestration tools are Oozie, which 
tends to be used with on-premises Hadoop, and Airflow, which 
is used more often in the cloud. They will help you create and 
manage a pipeline; and, when the pipeline breaks down, they’ll 
show you which job the problem occurred in. 

But orchestration tools don’t help you drill down into that 
job; that’s up to you. You have to find the specific Spark run 
where the failure occurred. You have to use other tools, such as 
Spark UI or logs, and look at timestamps, using your detailed 
knowledge of each job to cross-correlate and, hopefully, find 
the issue. As you see, just finding the problem is messy, intense, 
time-consuming, expert work; fixing it is even more effort. 

Oozie also gives you a big-picture view of pipelines.

Unravel, by contrast, provides pipeline-specific views that first 
connect all the components - Spark, and everything else in 
your modern data stack - and runs of the data pipeline together 
in one place. Unravel then allows you to drill down into the 
slow, failed, or inefficient job, identify the actual problem, and 
fix it quickly. And it gets even better; Unravel’s AI-powered 
recommendations will  help you prevent a pipeline problem 
from even happening in the first place.



You didn’t have to look at Spark UI, plus dig through Spark 
logs, then check Oozie or Airflow. All the information is 
correlated into one view - a single pane of glass. 

This view shows details for several jobs. In the graphic, each 
line has an instance run. The longest duration shown here is 
three minutes and 1 second. If the SLA is “under two minutes,” 
then the job failed to meet its SLA. (Because some jobs run 
scores or hundreds of times a day, missing an SLA by more 
than a minute - especially when that means a roughly 50% 
overshoot against the SLA - can become a very big deal.) 

Unravel then provides history and correlated information, 
using all of this to deliver AI-powered recommendations. You 
can also set AutoActions against a wide variety of conditions 
and get cloud migration support.

Cluster Issues
Resources are allocated at the cluster level. The screenshot 
shows ResourceManager (RM), which tracks resources, 
schedules jobs such as Spark jobs, and so on. You can see the 
virtual machines assigned to your Spark jobs, what resources 
they’re using, and status - started or not started, completed or 
not completed. 

Apache Hadoop ResourceManager

The first problem is that there’s no way to see what actual 
resources your job is consuming. Nor can you see whether 
those resources are being used efficiently or not. So you can 
be over-allocated, wasting resources - or running very close to 
your resources limit, with the job likely to crash in the future. 

Nor can you compare past to present; ResourceManager 
does not have history in it. Now you can pull logs at this 
level – the YARN level – to look at what was happening, but 
that’s aggregated data, not the detail you’re looking for. You 
also can’t dig into potential conflicts with neighbors sharing 
resources in the cluster. 

You can use site tools like Cloudwatch, Cloudera Manager or 
Ambari. They provide a useful holistic view, at the cluster level 
– total CPU consumption, disk I/O consumption, and network 
I/O consumption. But, as with some of the pipeline views we 
discussed above, you can’t take this down to the job level. 

You may have a spike in cluster disk I/O. Was it your job that 
started that, or someone else’s? Again, you’re looking at Spark 
UI, you’re looking at Spark logs, hoping maybe to get a bit 
lucky and figure out what the problem is. Troubleshooting 
becomes a huge intellectual and practical challenge. And this is 
all taking away from time making your environment better or 
doing new projects that move the business forward. 

It’s common for a job to be submitted, then held because the 
cluster’s resources are already tied up. The bigger the job, the 
more likely it will have to wait. But existing tools make it hard 
to see how busy the cluster is. So later, when the job that had 
to wait finishes late, no one knows why that happened. 

 A cluster-level view showing vCores, specific users,  
and a specific queue

By contrast, in this screenshot from Unravel, you see cluster-
level details. This job was in the data security queue, and it 
was submitted on July 5th, around 7:30pm. These two rows 
show vCores – overall consumption on this Hadoop cluster’s 
memory. The orange line shows maximum usage, and the blue 
line shows what’s available. 

 At this point in time, usage (blue line) did not exceed 
available resources (orange line)



You can also get more granular and look at a specific user. You 
can go to the date and time that the job was launched and see 
what was running at that point in time. And voilà – there were 
actually enough resources available. 

So, it’s not a cluster-level problem; you need to examine the 
job itself. And Unravel, as we’ve described, gives you the tools 
to do that. You can see that we’ve eliminated a whole class of 
potential problems for this slowdown – not in hours or days, 
and with no trial-and-error experimentation needed. We just 
clicked around in Unravel for a few minutes. 

Unravel Data:  
An Ounce of Prevention
For the issues above, such as slowdowns, failures, missed SLAs 
or just expensive runs, a developer would have to be looking 
at YARN logs, ResourceManager logs, and Spark logs, possibly 
spending hours figuring it all out. Within Unravel, though, 
they would not need to jump between all those screens; they 
would get all the information in one place. They can then use 
Unravel’s built-in intelligence to automatically root-cause the 
problem and resolve it. 

Unravel Data solves the problem of Spark troubleshooting at all 
three levels – at the job, pipeline, and cluster levels. It handles 
the correlation problem – tying together cluster, pipeline, and 
job information – for you. Then it uses that information to 
give unique views at every level of your environment. Unravel 
makes AI-powered recommendations to help you head off 
problems; allows you to create AutoActions that execute on 
triggers you define; and makes troubleshooting much easier. 

Unravel solves systemic problems with Spark. For instance, 
Spark tends to cause overallocation: assigning very large 
amounts of resources to every run of a Spark job, to try to avoid 
crashes on any run of that job over time. The biggest datasets 
or most congested conditions set the tone for all runs of the job 
or pipeline. But with Unravel, you can flexibly right-size the 
allocation of resources. 

Unravel frees up your experts to do more productive work. And 
Unravel often enables newer and more junior-level people to 
be as effective as an expert would have been, using the ability 
to drill down, and the proactive insights and recommendations 
that Unravel provides.

Unravel even feeds back into software development. Once you 
find problems, you can work with the development team to 
implement new best practices, heading off problems before 
they appear. Unravel will then quickly tell you which new or 
revised jobs are making the grade. 

Another hidden virtue of Unravel is: it serves as a single 
source of truth for different roles in the organization. If the 
developer, or an operations person, finds a problem, then they 
can use Unravel to highlight just what the issue is, and how to 
fix it. And not only how to fix it this time, for this job, but to 
reduce the incidence of that class of problem across the whole 
organization. The same goes for business intelligence (BI) 
tool users such as analysts, data scientists, everyone. Unravel 
gives you a kind of X-ray of problems, so you can cooperate in 
solving them. 

With Unravel, you have the job history, the cluster history, and 
the interaction with the environment as a whole – whether it 
be on-premises, or using Databricks or native services on AWS, 
Azure, or Google Cloud Platform. In most cases you don’t have 
to try to remember, or discover, what tools you might have 
available in a given environment. You just click around in 
Unravel, largely the same way in any environment, and solve 
your problem. 

Between the problems you avoid, and your new-found ability 
to quickly solve the problems that do arise, you can start 
meeting your SLAs in a resource-efficient manner. You can 
create your jobs, run them, and be a rockstar Spark developer 
or operations person within your organization. 
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• Improved resource use ~50%
• Less troubleshooting work ~75%
• Lower costs ~50%
• Greater staff efficiency ~33%

Job-level recommendations and troubleshooting support

Correlation, ML, AI

Pipeline-level recommendations and troubleshooting support

Correlation, ML, AI

Cluster-level recommendations and troubleshooting support

Correlation, ML, AI

The Unravel advantage – on-premises and all public clouds
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Conclusion
In this Part 3 of the guide, we’ve given you a wide-ranging tour 
of how you can use Unravel Data to troubleshoot Spark jobs – 
on-premises and in the cloud, at the job, pipeline, and cluster 
levels, working across all levels, efficiently, from a single  
pane of glass. 

In Troubleshooting Spark Applications, Part 1:  
Top Ten Spark Difficulties, we described the ten biggest 
challenges for troubleshooting Spark jobs across levels. 
And in Spark Troubleshooting, Part 2: Five Types of 
Solutions, we describe the major categories of tools, several 
of which we touched on here. 

This Part 3 of the guide builds on the other two to show you 
how to address the problems we described, and more, with a 
single tool that does the best of what single-purpose tools do, 
and more – our DataOps platform, Unravel Data. 

We hope you have enjoyed, and learned from, reading this 
series of guides. If you would like to know more about Unravel 
Data now, you can download a free trial or contact Unravel.

http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/

