

Troubleshooting
Spark Challenges
Part 1: TOP TEN SPARK DIFFICULTIES

Spark has become one of the most important tools for
processing data – especially non-relational data – and
deriving value from it. And Spark serves as a platform for the
creation and delivery of analytics, AI, and machine learning
applications, among others. But troubleshooting Spark
applications is hard – and we’re here to help.

In this guide, we’ll describe ten challenges that arise frequently
in troubleshooting Spark applications. We’ll start with issues
at the job level, encountered by most people on the data team
– operations people/administrators, data engineers, and data
scientists, as well as analysts. Then, we’ll look at problems that
apply across a cluster. These problems are usually handled by
operations people/administrators and data engineers.

For more on Spark and its use, please see this piece in
Infoworld. And for more depth about the problems that arise in
creating and running Spark jobs, at both the job level and the
cluster level, please see the links below. There is also a good
introductory guide.

Five Reasons Why Troubleshooting
Spark Applications Is Hard
Some of the things that make Spark great also make it hard to
troubleshoot. Here are some key Spark features, and some of
the issues that arise in relation to them:

1. Memory-resident. Spark gets much of its speed and
power by using memory, rather than disk, for interim storage
of source data and results. However, this can cost a lot of
resources and money, which is especially visible in the cloud. It
can also make it easy for jobs to crash due to lack of sufficient
available memory. And it makes problems hard to diagnose –
only traces written to disk survive after crashes.

2. Parallel processing. Spark takes your job and applies
it, in parallel, to all the data partitions assigned to your job.
(You specify the data partitions, another tough and important
decision.) But when a processing workstream runs into trouble,
it can be hard to find and understand the problem among the
multiple workstreams running at once.

3. Variants. Spark is open source, so it can be tweaked and
revised in innumerable ways. There are major differences
among the Spark 1 series, Spark 2.x, and the newer Spark 3.

And Spark works somewhat differently across platforms –
on-premises; on cloud-specific platforms such as AWS EMR,
Azure HDInsight, and Google Dataproc; and on Databricks,
which is available across the major public clouds. Each variant
offers some of its own challenges, and a somewhat different set
of tools for solving them.

4. Configuration options. Spark has hundreds of
configuration options. And Spark interacts with the hardware
and software environment it’s running in, each component of
which has its own configuration options. Getting one or two
critical settings right is hard; when several related settings
have to be correct, guesswork becomes the norm, and over-
allocation of resources, especially memory and CPUs (see
below) becomes the safe strategy.

5. Trial and error approach. With so many configuration
options, how to optimize? Well, if a job currently takes six
hours, you can change one, or a few, options, and run it again.
That takes six hours, plus or minus. Repeat this three or four
times, and it’s the end of the week. You may have improved
the configuration, but you probably won’t have exhausted the
possibilities as to what the best settings are.

The Spark application is the Driver Process, and the job is
split up across executors. (Source: Apache Spark for the
Impatient on DZone.)

Three Issues with Spark Jobs,
on-Premises and in the Cloud
Spark jobs can require troubleshooting against three main
kinds of issues:

•	 Failure. Spark jobs can simply fail. Sometimes a job will
fail on one try, then work again after a restart. Just finding
out that the job failed can be hard; finding out why can be
harder. (Since the job is memory-resident, failure makes the
evidence disappear.)

•	 Poor performance. A Spark job can run slower than
you would like it to; slower than an external service level
agreement (SLA); or slower than it would do if it were
optimized. It’s very hard to know how long a job “should”
take, or where to start in optimizing a job or a cluster.

“The most difficult thing is finding
out why your job is failing, which
parameters to change. Most of
the time, it’s OOM errors...”
		 – Jagat Singh, Quora

https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://duo.com/labs/tech-notes/debugging-apache-spark-pipelines
https://dzone.com/articles/apache-spark-in-a-nutshell
https://dzone.com/articles/apache-spark-in-a-nutshell
https://www.quora.com/What-are-the-advantages-of-Databricks-vs-deploying-your-own-Spark-cluster

•	 Excessive cost or resource use. The resource use or,
especially in the cloud, the hard dollar cost of a job may raise
concern. As with performance, it’s hard to know how much
the resource use and cost “should” be, until you put work
into optimizing and see where you’ve gotten to.

All of the issues and challenges described here apply to Spark
across all platforms, whether it’s running on-premises, in
Amazon EMR, or on Databricks (across AWS, Azure, or GCP).
However, there are a few subtle differences:

•	 Move to cloud. There is a big movement of big data
workloads from on-premises (largely running Spark on
Hadoop) to the cloud (largely running Spark on Amazon
EMR or Databricks). Moving to cloud provides greater
flexibility and faster time to market, as well as access to
built-in services found on each platform.

•	 Move to on-premises. There is a small movement
of workloads from the cloud back to on-premises
environments. When a cloud workload “settles down,”
such that flexibility is less important, then it may become
significantly cheaper to run it on-premises instead.

•	 On-premises concerns. Resources (and costs) on-
premises tend to be relatively fixed; there can be a leadtime
of months to years to significantly expand on-premises
resources. So the main concern on-premises is maximizing
the existing estate: making more jobs run in existing
resources, and getting jobs to complete reliably and on-time,
to maximize the pay-off from the existing estate.

•	 Cloud concerns. Resources in the cloud are flexible
and “pay as you go” – but as you go, you pay. So the main
concern in the cloud is managing costs. (As AWS puts it,
“When running big data pipelines on the cloud, operational
cost optimization is the name of the game.”) This concern
increases because reliability concerns in the cloud can often
be addressed by “throwing hardware at the problem” –
increasing reliability, but at greater cost.

•	 On-premises Spark vs Amazon EMR. When moving
to Amazon EMR, it’s easy to do a “lift and shift” from
on-premises Spark to EMR. This saves time and money
on the cloud migration effort, but any inefficiencies in the
on-premises environment are reproduced in the cloud,
increasing costs. It’s also fully possible to refactor before
moving to EMR, just as with Databricks.

•	 On-premises Spark vs Databricks. When moving to
Databricks, most companies take advantage of Databricks’
capabilities, such as ease of starting/shutting down clusters,
and do at least some refactoring as part of the cloud
migration effort. This costs time and money in the cloud
migration effort, but results in lower costs and, potentially,
greater reliability for the refactored job in the cloud.

All of these concerns are accompanied by a distinct lack of
needed information. Companies often make crucial decisions –
on-premises vs. cloud, EMR vs. Databricks, “lift and shift” vs.
refactoring – with only guesses available as to what different
options will cost in time, resources, and money.

Ten Spark Challenges
Many Spark challenges relate to configuration, including the
number of executors to assign, memory usage (at the driver
level, and per executor), and what kind of hardware/machine
instances to use. You make configuration choices per job, and
also for the overall cluster in which jobs run, and these are
interdependent – so things get complicated, fast.

Some challenges occur at the job level; these challenges are
shared right across the data team. They include:

1.	 How many executors should each job use?

2.	 How much memory should I allocate for each job?

3.	 How do I find and eliminate data skew?

4.	 How do I make my pipelines work better?

5.	 How do I know if a specific job is optimized?

Other challenges come up at the cluster level, or even at the
stack level, as you decide what jobs to run on what clusters.
These problems tend to be the remit of operations people and
data engineers. They include:

6.	 How do I size my nodes, and match them to the right
servers/instance types?

7.	 How do I see what’s going on across the Spark stack
and apps?

8.	 Is my data partitioned correctly for my SQL queries?

9.	 When do I take advantage of auto-scaling?

10.	How do I get insights into jobs that have problems?

For easy access, these challenges are listed below, linked to the
appropriate page in this guide:

Job-Level Challenges
1.	 Executor and core allocation

2.	 Memory allocation

3.	 Data skew/small files

4.	 Pipeline optimization

5.	 Finding out whether a job is
optimized

Impacts: Resources for a given job (at the cluster level) or
across clusters tend to be significantly under-allocated (causes
crashes, hurting business results) or over-allocated (wastes
resources and can cause other jobs to crash, both of which hurt
business results).

Cluster-Level Challenges
6.	 Resource allocation

7.	 Observability

8.	Data partitioning vs. SQL
queries/inefficiency

9. Use of auto-scaling

10. Troubleshooting

https://aws.amazon.com/blogs/big-data/how-verizon-media-group-migrated-from-on-premises-apache-hadoop-and-spark-to-amazon-emr/

Section 1: Five Job-Level Challenges
These challenges occur at the level of individual jobs. Fixing
them can be the responsibility of the developer or data scientist
who created the job, or of operations people or data engineers
who work on both individual jobs and at the cluster level.

However, job-level challenges, taken together, have massive
implications for clusters, and for the entire data estate. One
of our Unravel Data customers has undertaken a right-
sizing program for resource-intensive jobs that has clawed
back nearly half the space in their clusters, even though
data processing volume and jobs in production have been
increasing.

For these challenges, we’ll assume that the cluster your job is
running in is relatively well-designed (see next section); that
other jobs in the cluster are not resource hogs that will knock
your job out of the running; and that you have the tools you
need to troubleshoot individual jobs.

1. HOW MANY EXECUTORS AND CORES
SHOULD A JOB USE?
One of the key advantages of Spark is parallelization – you
run your job’s code against different data partitions in
parallel workstreams, as in the diagram below. The number of
workstreams that run at once is the number of executors, times
the number of cores per executor. So how many executors
should your job use, and how many cores per executor – that
is, how many workstreams do you want running at once?

A Spark job using three cores to parallelize output.
Up to three tasks run simultaneously, and seven tasks are
completed in a fixed period of time. (Source:
Lisa Hua, Spark Overview, Slideshare.)

You want high usage of cores, high usage of memory per
core, and data partitioning appropriate to the job. (Usually,
partitioning on the field or fields you’re querying on.) This
beginner’s guide for Hadoop suggests two-three cores per
executor, but not more than five; this expert’s guide to Spark
tuning on AWS suggests that you use three executors per node,
with five cores per executor, as your starting point for all jobs.

You are likely to have your own sensible starting point for
your on-premises or cloud platform, the servers or instances
available, and experience your team has had with similar
workloads. Once your job runs successfully a few times, you
can either leave it alone, or optimize it. We recommend that
you optimize it, because optimization:

•	 Helps you save resources and money (not over-allocating)

•	 Helps prevent crashes, because you right-size the resources
(not under-allocating)

•	 Helps you fix crashes fast, because allocations are roughly
correct, and because you understand the job better

2. HOW MUCH MEMORY SHOULD I
ALLOCATE FOR EACH JOB?
Memory allocation is per executor, and the most you can
allocate is the total available in the node. If you’re in the cloud,
this is governed by your instance type; on-premises, by your
physical server or virtual machine. Some memory is needed
for your cluster manager and system resources (16GB may be a
typical amount), and the rest is available for jobs.

If you have three executors in a 128GB cluster, and 16GB
is taken up by the cluster, that leaves 37GB per executor.
However, a few GB will be required for executor overhead;
the remainder is your per-executor memory. You will want
to partition your data so it can be processed efficiently in the
available memory.

This is just a starting point, however. You may need to be using
a different instance type, or a different number of executors,
to make the most efficient use of your node’s resources against
the job you’re running. As with the number of executors (see
previous section), optimizing your job will help you know
whether you are over- or under-allocating memory, reduce the
likelihood of crashes, and get you ready for troubleshooting
when the need arises.

For more on memory management, see this widely read article,
Spark Memory Management, by our own Rishitesh Mishra.

3. HOW DO I HANDLE DATA SKEW AND
SMALL FILES?
Data skew and small files are complementary problems. Data
skew tends to describe large files – where one key value, or a
few, have a large share of the total data associated with them.
This can force Spark, as it’s processing the data, to move data
around in the cluster, which can slow down your task, cause
low utilization of CPU capacity, and cause out-of-memory
errors which abort your job. Several techniques for handling
very large files which appear as a result of data skew are given
in the popular article, Data Skew and Garbage Collection, by
Rishitesh Mishra of Unravel.

https://www.slideshare.net/LisaHua/spark-overview-37479609
http://beginnershadoop.com/2019/09/30/distribution-of-executors-cores-and-memory-for-a-spark-application/
https://medium.com/expedia-group-tech/part-3-efficient-executor-configuration-for-apache-spark-b4602929262
https://www.unraveldata.com/common-reasons-spark-applications-slow-fail-part-1/
https://www.unraveldata.com/common-failures-slowdowns-part-ii/

Small files are partly the other end of data skew – a share
of partitions will tend to be small. And Spark, since it is a
parallel processing system, may generate many small files from
parallel processes. Also, some processes you use, such as file
compression, may cause a large number of small files to appear,
causing inefficiencies. You may need to reduce parallelism
(undercutting one of the advantages of Spark), repartition (an
expensive operation you should minimize), or start adjusting
your parameters, your data, or both (see details).

Both data skew and small files incur a meta-problem that’s
common across Spark – when a job slows down or crashes,
how do you know what the problem was? We will mention
this again, but it can be particularly difficult to know this for
data-related problems, as an otherwise well-constructed job
can have seemingly random slowdowns or halts, caused by
hard-to-predict and hard-to-detect inconsistencies across
different data sets.

4. HOW DO I OPTIMIZE AT THE PIPELINE
LEVEL?
Spark pipelines are made up of dataframes, connected by
transformers (which calculate new data from existing data),
and Estimators. Pipelines are widely used for all sorts of
processing, including extract, transform, and load (ETL) jobs
and machine learning. Spark makes it easy to combine jobs
into pipelines, but it does not make it easy to monitor and
manage jobs at the pipeline level. So it’s easy for monitoring,
managing, and optimizing pipelines to appear as an
exponentially more difficult version of optimizing individual
Spark jobs.

Existing Transformers create new Dataframes, with an
Estimator producing the final model. (Source: Spark
Pipelines: Elegant Yet Powerful, InsightDataScience.)

Many pipeline components are “tried and trusted” individually,
and are thereby less likely to cause problems than new
components you create yourself. However, interactions
between pipeline steps can cause novel problems.

Just as job issues roll up to the cluster level, they also roll up
to the pipeline level. Pipelines are increasingly the unit of work
for DataOps, but it takes truly deep knowledge of your jobs and
your cluster(s) for you to work effectively at the pipeline level.
This article, which tackles the issues involved in some depth,
describes pipeline debugging as an “art.”

5. HOW DO I KNOW IF A SPECIFIC JOB IS
OPTIMIZED?
Neither Spark nor, for that matter, SQL are designed for ease of
optimization. Spark comes with a monitoring and management
interface, Spark UI, which can help. But Spark UI can be
challenging to use, especially for the types of comparisons –
over time, across jobs, and across a large, busy cluster – that
you need to really optimize a job. And there is no “SQL UI” that
specifically tells you how to optimize your SQL queries.

There are some general rules. For instance, a “bad” – inefficient
– join can take hours. But it’s very hard to find where your app
is spending its time, let alone whether a specific SQL command
is taking a long time, and whether it can indeed be optimized.

Spark’s Catalyst optimizer does its best to optimize your queries
for you. But when data sizes grow large enough, and processing
gets complex enough, you have to help it along if you want your
resource usage, costs, and runtimes to stay on the acceptable side.

Section 2: Cluster-Level Challenges
Cluster-level challenges are those that arise for a cluster that
runs many (perhaps hundreds or thousands) of jobs, in cluster
design (how to get the most out of a specific cluster), cluster
distribution (how to create a set of clusters that best meets
your needs), and allocation across on-premises resources and
one or more public, private, or hybrid cloud resources.

The first step toward meeting cluster-level challenges is to meet
job-level challenges effectively, as described above. A cluster
that’s running unoptimized, poorly understood, slowdown-
prone and crash-prone jobs is impossible to optimize. But if
your jobs are right-sized, cluster-level challenges become much
easier to meet. (Note that Unravel Data, as mentioned in the
previous section, helps you find your resource-heavy Spark
jobs, and optimize those first. It also does much of the work of
troubleshooting and optimization for you.)

Meeting cluster-level challenges for Spark may be a topic better
suited for a graduate-level computer science seminar than for
this guide, but here are some of the issues that come up, and a
few comments on each:

6. ARE NODES MATCHED UP TO SERVERS
OR CLOUD INSTANCES?
A Spark node – a physical server or a cloud instance – will
have an allocation of CPUs and physical memory. (The whole
point of Spark is to run things in actual memory, so this is
crucial.) You have to fit your executors and memory allocations
into nodes that are carefully matched to existing resources,
on-premises or in the cloud. (You can allocate more or fewer
Spark cores than there are available CPUs, but matching them
makes things more predictable, uses resources better, and may
make troubleshooting easier.)

https://www.linkedin.com/pulse/apache-spark-small-file-problem-simple-advanced-solutions-garg/
https://blog.insightdatascience.com/spark-pipelines-elegant-yet-powerful-7be93afcdd42
https://blog.insightdatascience.com/spark-pipelines-elegant-yet-powerful-7be93afcdd42
https://duo.com/labs/tech-notes/debugging-apache-spark-pipelines
https://www.unraveldata.com/resources/catalyst-analyst-a-deep-dive-into-sparks-optimizer/
https://www.unraveldata.com/technologies/spark/

On-premises, poor matching between nodes, physical servers,
executors and memory results in inefficiencies, but these may
not be very visible; as long as the total physical resource is
sufficient for the jobs running, there’s no obvious problem.
However, issues like this can cause datacenters to be very
poorly utilized, meaning there’s big overspending going on
– it’s just not noticed. (Ironically, the impending prospect of
cloud migration may cause an organization to freeze on-
premises spending, shining a spotlight on costs and efficiency.)

In the cloud, “pay as you go” pricing shines a different type of
spotlight on efficient use of resources – inefficiency shows up
in each month’s bill. You need to match nodes, cloud instances,
and job CPU and memory allocations very closely indeed, or
incur what might amount to massive overspending. This article
gives you some guidelines for running Apache Spark cost-
effectively on AWS EC2 instances, and is worth a read even if
you’re running on-premises, or on a different cloud provider.

You still have big problems here. In the cloud, with costs both
visible and variable, cost allocation is a big issue. It’s hard to
know who’s spending what, let alone what the business results
that go with each unit of spending are. But tuning workloads
against server resources and/or instances is the first step in
gaining control of your spending, across all your data estates.

7. HOW DO I SEE WHAT’S GOING ON IN
MY CLUSTER?
“Spark is notoriously difficult to tune and maintain,” according
to an article in The New Stack. Clusters need to be “expertly
managed” to perform well, or all the good characteristics of
Spark can come crashing down in a heap of frustration and
high costs. (In people’s time and in business losses, as well as
direct, hard dollar costs.)

Key Spark advantages include accessibility to a wide range of
users and the ability to run in memory. But the most popular
tool for Spark monitoring and management, Spark UI, doesn’t
really help much at the cluster level. You can’t, for instance,
easily tell which jobs consume the most resources over time. So
it’s hard to know where to focus your optimization efforts. And
Spark UI doesn’t support more advanced functionality – such
as comparing the current job run to previous runs, issuing
warnings, or making recommendations, for example.

Logs on cloud clusters are lost when a cluster is terminated,
so problems that occur in short-running clusters can be that
much harder to debug. More generally, managing log files
is itself a big data management and data accessibility issue,
making debugging and governance harder. This occurs in both
on-premises and cloud environments. And, when workloads
are moved to the cloud, you no longer have a fixed-cost data
estate, nor the “tribal knowledge” accrued from years of
running a gradually changing set of workloads on-premises.
Instead, you have new technologies and pay-as-you-go billing.
So cluster-level management, hard as it is, becomes critical.

8. IS MY DATA PARTITIONED CORRECTLY
FOR MY SQL QUERIES? (AND OTHER
INEFFICIENCIES)
Operators can get quite upset, and rightly so, over “bad” or
“rogue” queries that can cost way more, in resources or cost,
than they need to. One colleague describes a team he worked
on that went through more than $100,000 of cloud costs in a
weekend of crash-testing a new application – a discovery made
after the fact. (But before the job was put into production,
where it would have really run up some bills.)

SQL is not designed to tell you how much a query is likely
to cost, and more elegant-looking SQL queries (i.e., fewer
statements) may well be more expensive. The same is true of
all kinds of code you have running. So you have to do some or
all of three things:

•	 Learn something about SQL, and about coding languages
you use, especially how they work at runtime

•	 Understand how to optimize your code and partition your
data for good price/performance

•	 Experiment with your app to understand where the resource
use/cost “hot spots” are, and reduce them where possible

All this fits in the “optimize” recommendations from 1. and 2.
above. We’ll talk more about how to carry out optimization in
Part 2 of this guide.

9. WHEN DO I TAKE ADVANTAGE OF
AUTO-SCALING?
The ability to auto-scale – to assign resources to a job just
while it’s running, or to increase resources smoothly to meet
processing peaks – is one of the most enticing features of the
cloud. It’s also one of the most dangerous; there is no practical
limit to how much you can spend. You need some form of
guardrails, and some form of alerting, to remove the risk of
truly gigantic bills.

The need for auto-scaling might, for instance, determine whether
you move a given workload to the cloud, or leave it running,
unchanged, in your on-premises data center. But to help an
application benefit from auto-scaling, you have to profile it,
then cause resources to be allocated and de-allocated to match
the peaks and valleys. And you have some calculations to make,
because cloud providers charge you more for spot resources
– those you grab and let go of, as needed – than for persistent
resources that you keep running for a long time. Spot resources
may cost two or three times as much as dedicated ones.

The first step, as you might have guessed, is to optimize your
application, as in the previous sections. Auto-scaling is a price/
performance optimization, and a potentially resource-intensive
one. You should do other optimizations first.

Then profile your optimized application. You need to calculate
ongoing and peak memory and processor usage, figure out

https://medium.com/expedia-group-tech/part-1-cloud-spending-efficiency-guide-for-apache-spark-on-ec2-instances-79ee8814de4e
https://thenewstack.io/the-good-bad-and-ugly-apache-spark-for-data-science-work/

how long you need each, and the resource needs and cost for
each state. And then decide whether it’s worth auto-scaling the
job, whenever it runs, and how to do that. You may also need
to find quiet times on a cluster to run some jobs, so the job’s
peaks don’t overwhelm the cluster’s resources.

To help, Databricks has two types of clusters, and the second
type works well with auto-scaling. Most jobs start out in
an interactive cluster, which is like an on-premises cluster;
multiple people use a set a shared resources. It is, by definition,
very difficult to avoid seriously underusing the capacity of an
interactive cluster.

So you are meant to move each of your repeated, resource-
intensive, and well-understood jobs off to its own, dedicated,
job-specific cluster. A job-specific cluster spins up, runs its job,
and spins down. This is a form of auto-scaling already, and
you can also scale the cluster’s resources to match job peaks, if
appropriate. But note that you want your application profiled
and optimized before moving it to a job-specific cluster.

10. HOW DO I FIND AND FIX PROBLEMS?
Just as it’s hard to fix an individual Spark job, there’s no
easy way to know where to look for problems across a Spark
cluster. And once you do find a problem, there’s very little
guidance on how to fix it. Is the problem with the job itself, or
the environment it’s running in? For instance, over-allocating
memory or CPUs for some Spark jobs can starve others. In the
cloud, the noisy neighbors problem can slow down a Spark job
run to the extent that it causes business problems on one outing
– but leaves the same job to finish in good time on the next run.

The better you handle the other challenges listed in this guide,
the fewer problems you’ll have, but it’s still very hard to know
how to most productively spend Spark operations time. For
instance, a slow Spark job on one run may be worth fixing in
its own right, and may be warning you of crashes on future
runs. But it’s very hard just to see what the trend is for a Spark
job in performance, let alone to get some idea of what the
job is accomplishing vs. its resource use and average time to
complete. So Spark troubleshooting ends up being reactive,
with all too many furry, blind little heads popping up for
operators to play Whack-a-Mole with.

Impacts of These Challenges
If you meet the above challenges effectively, you’ll use your
resources efficiently and cost-effectively. However, our
observation here at Unravel Data is that most Spark clusters
are not run efficiently.

What we tend to see most are the following problems –
at a job level, within a cluster, or across all clusters:

•	 Under-allocation. It can be tricky to allocate your
resources efficiently on your cluster, partition your datasets
effectively, and determine the right level of resources for
each job. If you under-allocate (either for a job’s driver or
the executors), a job is likely to run too slowly, or to crash.
As a result, many developers and operators resort to…

•	 Over-allocation. If you assign too many resources to
your job, you’re wasting resources (on-premises) or money
(cloud). We hear about jobs that need, for example, 2GB of
memory, but are allocated much more – in one case, 85GB.

Applications can run slowly, because they’re under-allocated –
or because some apps are over-allocated, causing others to run
slowly. Data teams then spend much of their time fire-fighting
issues that may come and go, depending on the particular
combination of jobs running that day. With every level of
resource in shortage, new, business-critical apps are held up,
so the cash needed to invest against these problems doesn’t
show up. IT becomes an organizational headache, rather than a
source of business capability.

Conclusion
To jump ahead to the end of this series a bit, our customers
here at Unravel are easily able to spot and fix over-allocation
and inefficiencies. They can then monitor their jobs in
production, finding and fixing issues as they arise. Developers
even get on board, checking their jobs before moving them to
production, then teaming up with Operations to keep them
tuned and humming.

One Unravel customer, Mastercard, has been able to reduce
usage of their clusters by roughly half, even as data sizes and
application density has moved steadily upward during the
global pandemic. And everyone gets along better, and has
more fun at work, while achieving these previously unimagined
results.

So, whether you choose to use Unravel or not, develop a culture
of right-sizing and efficiency in your work with Spark. It will
seem to be a hassle at first, but your team will become much
stronger, and you’ll enjoy your work life more, as a result.

You need a sort of X-ray of your Spark jobs, better cluster-level
monitoring, environment information, and to correlate all
of these sources into recommendations. In Troubleshooting
Spark Applications, Part 2: Solutions, we will describe the
most widely used tools for Spark troubleshooting – including
the Spark Web UI and our own offering, Unravel Data – and
how to assemble and correlate the information you need. If
you would like to know more about Unravel Data now, you can
download a free trial or contact Unravel.

© Unravel. All rights reserved. Unravel and the Unravel logo are registered trademarks
of Unravel. All other trademarks are the property of their respective owners.

unraveldata.com | hello@unraveldata.com

https://www.unraveldata.com/resources/mastercard-improves-platform-resiliency-by-detecting-harmful-workloads/
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/
http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=

Troubleshooting
Spark Applications

PART 2: FIVE TYPES OF SOLUTIONS

Job-Level Challenges
1.	 Executor and core allocation

2.	 Memory allocation

3.	Data skew/small files

4.	 Pipeline optimization

5.	 Finding out whether a job
is optimized

Cluster-Level Challenges
6.	 Resource allocation

7.	 Observability

8.	Data partitioning vs. SQL
queries/inefficiency

9. Use of auto-scaling

10. Troubleshooting

Impacts: Resources for a given job (at the cluster level) or
across clusters tend to be significantly under-allocated (causes
crashes, hurting business results) or over-allocated (wastes
resources and can cause other jobs to crash, both of which
hurt business results).

Note: This guide applies to running Spark jobs on any
platform, including Cloudera platforms; cloud vendor-specific
platforms – Amazon EMR, Microsoft HDInsight, Microsoft
Synapse, Google DataProc; Databricks, which is on all
three major public cloud providers; and Apache Spark on
Kubernetes, which runs on nearly all platforms, including
on-premises and cloud.

Introduction
Spark is known for being extremely difficult to debug. But this
is not all Spark’s fault. Problems in running a Spark job can be
the result of problems with the infrastructure Spark is running
on, inappropriate configuration of Spark, Spark issues, the
currently running Spark job, other Spark jobs running at the
same time - or interactions among these layers. But Spark jobs
are very important to the success of the business; when a job
crashes, or runs slowly, or contributes to a big increase in the
bill from your cloud provider, you have no choice but to fix
the problem.

Widely used tools generally focus on part of the environment
– the Spark job, infrastructure, the network layer, etc. These
tools don’t present a holistic view. But that’s just what you
need to truly solve problems. (You also need the holistic view
when you’re creating the Spark job, and as a check before you
start running it, to help you avoid having problems in the first
place. But that’s another story.)

In this guide, Part 2 in a series, we’ll show ten major tools that
people use for Spark troubleshooting. We’ll show what they do
well, and where they fall short. In Part 3, the final piece, we’ll
introduce Unravel Data, which makes solving many of these
problems easier.

What’s the Problem(s)?
The problems we mentioned in Part 1 of this series have many
potential solutions. The methods people usually use to try to
solve them often derive from that person’s role on the data
team. The person who gets called when a Spark job crashes,
such as the job’s developer, is likely to look at the Spark job.
The person who is responsible for making sure the cluster is
healthy will look at that level. And so on.

The following chart, from Part 1, shows the most common
job-level and cluster-level challenges that data teams face in
successfully running Spark jobs.

In this guide, we highlight five types of solutions that
people use – often in various combination – to solve problems
with Spark jobs

1.	Spark UI

2.	Spark logs

3.	Platform-level tools such as Cloudera Manager, the
Amazon EMR UI, Cloudwatch, the Databricks UI,
and Ganglia

4.	APM tools such as Cisco AppDynamics, Datadog,
and Dynatrace

5.	DataOps platforms such as Unravel Data

As an example of solving problems of this type, let’s look at the
problem of an application that’s running too slowly – a very
common Spark problem, that may be caused by one or more
of the issues listed in the chart. Here. we’ll look at how existing
tools might be used to try to solve it.

Note: Many of the observations and images in this guide
originated in the July 2021 presentation, Beyond Observability:
Accelerate Performance on Databricks, by Patrick Mawyer,
Systems Engineer at Unravel Data. We recommend this
webinar to anyone interested in Spark troubleshooting and
Spark performance management, whether on Databricks or on
other platforms.

Life as a Spark developer

https://www.brighttalk.com/webcast/17674/492826
https://www.brighttalk.com/webcast/17674/492826

Solving Problems Using Spark UI
Spark UI is the first tool most data team members use when
there’s a problem with a Spark job. It shows a snapshot of
currently running jobs, the stages jobs are in, storage usage,
and more. It does a good job, but is seen as having some faults.
It can be hard to use, with a low signal-to-noise ratio and a
long learning curve. It doesn’t tell you things like which jobs
are taking up more or less of a cluster’s resources, nor deliver
critical observations such as CPU, memory, and I/O usage.

In the case of a slow Spark application, Spark UI will show you
what the current status of that job is. You can also use Spark
UI for past jobs, if the logs for those jobs still exist, and if they
were configured to log events properly. Also, the Spark history
server tends to crash. When this is all working, it can help you
find out how long an application took to run in the past – you
need to do this kind of investigative work just to determine
what “slow” is.

The following screenshot is for a Spark 1.4.1 job with a two-
node cluster. It shows a Spark Streaming job that steadily uses
more memory over time, which might cause the job to slow
down. And the job eventually – over a matter of days – runs
out of memory.

A Spark streaming job that uses progressively more
memory over time. (Source: Stack Overflow)

To solve this problem, you might do several things. Here’s a
brief list of possible solutions, and the problems they might
cause elsewhere:

•	 Increase available memory for each worker. You can
increase the value of the spark.executor.memory variable
to increase the memory for each worker. This will not
necessarily speed the job up, but will defer the eventual
crash. However, you are either taking memory away
from other jobs in your cluster or, if you’re in the cloud,
potentially running up the cost of the job.

•	 Increase the storage fraction. You can change the value
of spark.storage.memoryFraction, which varies from 0 to 1,
to a higher fraction. Since the Java virtual machine (JVM)
uses memory for caching RDDs and for shuffle memory,
you are increasing caching memory at the expense of shuffle
memory. This will cause a different failure if, at some point,
the job needs shuffle memory that you allocated away at
this step.

•	 Increase the parallelism of the job. For a Spark
Cassandra Connector job, for example, you can change spark.
cassandra.input.split.size to a smaller value. (It’s a different
variable for other RDD types.) Increasing parallelism
decreases the data set size for each worker, requiring
less memory per worker. But more workers means more
resources used; in a fixed resources environment, this takes
resources away from other jobs; in a dynamic environment,
such as Databricks job clusters, it directly runs up your bill.

The point here is that everything you might do has a certain
amount of guesswork to it, because you don’t have complete
information. And, whichever approach you choose, you are
putting the job in line for other, different problems, including
later failure, failure for other reasons, or increased cost.
Alternatively, your job may be fine, but at the expense of
other jobs that then fail, and those failures will also be hard to
troubleshoot.

Spark UI, showing metrics for completed tasks.
(Source: Unravel Data)

Here’s a look at the Stages section of Spark UI. It gives you a
list of metrics across executors. However, there’s no overview
or big picture view to help guide you in finding problems. And
the tool doesn’t make recommendations to help you solve
problems, or avoid them in the first place.

Spark UI is limited to Spark – and Spark job for example may
have data coming in from Kafka, and run alongside other tools.
Each of those has its own monitoring and management tools,
or does without; Spark UI doesn’t work with them. It also lacks
pro-active alerting, automatic actions, and AI-driven insights,
all found in Unravel.

Spark UI is very useful for what it does, but its limitations -
and the limitations of the other tool types described here - lead
many organizations to build homegrown tools or toolsets, often
built on Grafana. These solutions are resource-intensive, hard
to extend, hard to support, and hard to keep up-to-date.

A few individuals and organizations even offer their
homegrown tools as open source software for other
organizations to use, but of course support, documentation,
and updates are limited. Several such tools, such as Sparklint
and DrElephant, do not support recent versions of Spark. At
this writing, they have not had many, if any, fresh commits in
recent months or even years.

https://stackoverflow.com/questions/35478223/size-in-memory-under-storage-tab-of-spark-ui-showing-increase-in-ram-usage-ove

Spark Logs
Spark logs are the underlying resource for troubleshooting
Spark jobs. Spark UI can even use Spark logs, if available, to
rebuild a view of the Spark environment on an historical basis.
You can use the logs related to the job’s driver and executors to
retrospectively find out what happened to a given job, and even
some information about what was going on with other jobs at
the time.

If you have a slow app, for instance, you can painstakingly
assemble a picture to tell you if the slowness was in one task
versus the other by scanning through multiple log files. But
answering why and finding the root cause is hard. These logs
don’t have complete information about resource usage, data
partitioning, correct configuration setting and many other
factors than can affect the performance. ere are also many
potential issues that don’t show up in Spark logs, such as
“noisy neighbor” or networking issues that reduce resource
availability within your Spark environment.

•	 Missing files. Governance rules and data storage
considerations take files away, as files are moved to
archival media or simply lost to deletion. More than one
large organization deletes files every 90 days, which makes
quarterly summaries very difficult, and comparisons to, say,
the previous year’s holiday season or tax season impossible.

•	 Only Spark-specific information. Spark logs are just that
- logs from Spark. They don’t include much information about
the infrastructure available, resource allocation, configuration
specifics, etc. Yet this information is vital to solving a great
many of the problems that hamper Spark jobs.

Because Spark logs don’t cover infrastructure and related
information, it’s up to the operations person to find as much
information they can on those other important areas, then try
to integrate it all and determine the source of the problem.
(Which may be the result of a complex interaction among
different factors, with multiple changes needed to fix it.)

Platform-Level Solutions
There are platform-level solutions that work on a given Spark
platform, such as Cloudera Manager, the Amazon EMR UI, and
Databricks UI. In general, these interfaces allow you to work
at the cluster level. They tell you information about resource
usage and the status of various services.

If you have a slow app, for example, these tools will give you
part of the picture you need to put together to determine
the actual problem, or problems. But these tools do not
have the detail-level information in the tools above, nor do
they even have all the environmental information you need.
So again, it’s up to you to decide how much time to spend
researching, to pull all the information together, and to try
to determine a solution. A quick fix might take a few hours; a
comprehensive, long-term solution may take days of research
and experimentation.

This screenshot shows Databricks UI. It gives you a solid
overview of jobs and shows you status, cluster type, and so on.
Like other platform-level solutions, it doesn’t help you much
with historical runs, nor in working at the pipeline level, across
the multiple jobs that make up the pipeline.

Source: Unravel Data

Spark logs are a tremendous resource, and are always a go-to
for solving problems with Spark jobs. However, if you depend
on logs as a major component of your troubleshooting toolkit,
several problems come up, including:

•	 Access and governance difficulties. In highly secure
environments, it can take time to get permission to access
logs, or you may need to ask someone with the proper
permissions to access the file for you. In some highly
regulated companies, such as financial institutions, it can
take hours per log to get access.

•	 Multiple files. You may need to look at the logs for a
driver and several executors, for instance, to solve job-level
problems. And your brain is the comparison and integration
engine that pulls the information together, makes sense of it,
and develops insights into possible causes and solutions.

•	 Voluminous files. The file for one component of a job
can be very large, and all the files for all the components of
a job can be huge - especially for long-running jobs. Again,
you are the one who has to find and retain each part of
the information needed, develop a complete picture of the
problem, and try different solutions until one works.

Source: Unravel Data

Another monitoring tool for Spark, which is included as
open source within Databricks, is called Ganglia. It’s largely
complementary to Databricks UI, though it also works at the
cluster and, in particular, at the node level. You can see host-
level metrics such as CPU consumption, memory consumption,
disk usage, network-level IO – all host-level factors that can
affect the stability and performance of your job.

This can allow you to see if your nodes are configured
appropriately, to institute manual scaling or auto-scaling, or to
change instance types. (Though someone trying to fix a specific
job is not inclined to take on issues that affect other jobs, other
users, resource availability, and cost.) Ganglia does not have
job-specific insights, nor work with pipelines. And there are no
good output options; you might be reduced to taking a screen
snapshot to get a JPEG or PNG image of the current status.

Platform-level solutions can be useful for solving the root
causes of problems such as out-of-memory errors. However,
they don’t go down to the job level, leaving that to resources
such as Spark logs and tools such as Spark UI. Therefore, to
solve a problem, you are often using platform-level solutions
in combination with job-level tools – and again, it’s your brain
that has to do the comparisons and data integration needed to
get a complete picture and solve the problem.

Like job-level tools, these solutions are not comprehensive,
nor integrated. They offer snapshots, but not history, and
they don’t make proactive recommendations. And, to solve
a problem on Databricks, for example, you may be using
Spark logs, Spark UI, Databricks UI, and Ganglia, along with
Cloudwatch on AWS, or Azure Log Monitoring and Analytics.
None of these tools integrate with the others.

APM Tools
There is a wide range of monitoring tools, generally known
as Application Performance Management (APM) tools. Many
organizations have adopted one or more tools from this
category, though they can be expensive, and provide very
limited metrics on Spark and other modern data technologies.
Leading tools in this category include Datadog, Dynatrace, and
Cisco AppDynamics.

Source: Unravel Data

Support from the open-source community is starting to shift
toward more modern observability platforms like Prometheus,
which works well with Kubernetes. And cloud providers
offer their own solutions – AWS Cloudwatch, for example,
and Azure Log Monitoring and Analytics. These tools are all
oriented toward web applications, not the backend apps used
for analytics, AI, machine learning, and other use cases that
are usually considered part of the big data world. They lack big
data application and pipeline information which is essential to
understand what’s happening to your job and how your job is
affecting things on the cluster or workspace.

Source: Unravel Data

Source: Unravel Data

For a slow app, for instance, an APM tool might tell you if the
system as a whole is busy, slowing your app, or if there were
networking issues, slowing down all the jobs. While helpful,
they’re oriented toward monitoring and observability for Web
applications and middleware, not data-intensive operations
such as Spark jobs. They tend to lack information about
pipelines, specific jobs, data usage, configuration setting,
and much more, as they are not designed to deal with the
complexity of modern data applications.

DataOps Platforms
To sum up, there are several types of existing tools:

•	 DIY with Spark logs. Spark keeps a variety of logs, and
you can parse them, in a do it yourself (DIY) fashion, to
help solve problems. But this lacks critical infrastructure,
container, and other metrics.

•	 Open source tools. Spark UI comes with Spark itself,
and there are other Spark tools from the open source
community. But these lack infrastructure, configuration and
other information. They also do not help connect together a
full pipeline view, as you need if you are using technologies
such as Kafka to bring data in.

•	 Platform-specific tools. The platforms that Spark
runs on - notably Cloudera platforms, Amazon EMR, and
Databricks - each have platform-specific tools that help
with Spark troubleshooting. But these lack application-level
information and are best used for troubleshooting platform
services.

•	 Application performance monitoring (APM) tools.
APM tools monitor the interactions of applications with
their environment, and can help with troubleshooting and
even with preventing problems. But the applications these
APM tools are built for are technologies such as .NET, Java,
and Ruby, not technologies that work with data-intensive
applications such as Spark.

•	 DataOps platforms. DataOps – applying Agile principles
to both writing and running Spark, and other big data jobs
– is catching on, and new platforms are emerging to embody
these principles.

Each tool in this plethora of tools takes in and processes
different, but overlapping, data sets. No one tool provides full
visibility, and even if you use one or more tools of each type,
full visibility is still lacking.

You need expertise in each tool to get the most out of that tool.
But the most important work takes place in the expert user’s
head: spotting a clue in one tool, which sends you looking at
specific log entries and firing up other tools, to come up with
a hypothesis as to the problem. You then have to try out the
potential solution, often through several iterations of trial
and error, before arriving at a “good enough” answer to the
problem.

Or, you might pursue two tried and trusted, but ineffective,
“solutions”: ratcheting up resources and retrying the job until
it works, either due to the increased resources or by luck; or
simply giving up, which our customers tell us they often had to
do before they started using Unravel Data.

The situation is much worse in the kind of hybrid data
clouds that organizations use today. To troubleshoot on each
platform, you need expertise in the toolset for that platform,
and all the others. (Since jobs often have cross-platform
interdependencies, and the same team has to support multiple
platforms.) In addition, when you find a solution for a problem
on one platform, you should apply what you’ve learned on all
platforms, taking into account their differences. In addition,
you have issues that are inherently multi-platform, such as
moving jobs from one platform to a platform that is better,
faster, or cheaper for a given job. Taking on all this with the
current, fragmented, and incomplete toolsets available is a
mind-numbing prospect.

The biggest need is for a platform that integrates the
capabilities from several existing tools, performing a five-step
process:

1.	 Ingest all of the data used by the tools above, plus
additional, application-specific and pipeline data.

2.	Integrate all of this data into an internal model of the
current environment, including pipelines.

3.	Provide live access to the model.

4.	Continually store model data in an internally maintained
history.

5.	Correlate information across the ingested data sets, the
current, “live” model, and the stored historical background,
to derive insights and make recommendations to the user.

This tool must also provide the user with the ability to put
“triggers” onto current processes that can trigger either alerts
or automatic actions. In essence, the tool’s inbuilt intelligence
and the user are then working together to make the right
things happen at the right time.

A simple example of how such a platform can help is by
keeping information per pipeline, not just per job - then
spotting, and automatically letting you know, when the
pipeline suddenly starts running slower than it had previously.
The platform will also make recommendations as to how you
can solve the problem. All this lets you take any needed action
before the job is delayed

© Unravel. All rights reserved. Unravel and the Unravel logo are registered trademarks
of Unravel. All other trademarks are the property of their respective owners.

unraveldata.com | hello@unraveldata.com

Conclusion
In this Part 2 guide, we’ve taken a whirlwind tour of tools
used to troubleshoot Spark applications. Most tools provide
one or more pieces of the puzzle, but none of them – nor any
combination of them – is a holistic solution.

As mentioned in Part 1 of this guide, Unravel customers can
easily spot and fix over-allocation and inefficiencies, using
job-level insights. Developers can check a job for stability and
efficiency even before putting it into production.

Unravel Data, the solution our company offers, is the
leading platform for DataOps. In Troubleshooting Spark
Applications, Part 3: Solutions, we will describe in detail
how Unravel Data compares to the tools described here. We
will show how it helps you prevent and repair issues at the job,
pipeline, and cluster levels, while also helping with additional
challenges such as cost optimization, SLA adherence, and
cloud migration.

You may be fine with the tools you already have, along with any
custom work you have done in-house. But if you think there’s
room for improvement in how you troubleshoot Spark jobs,
and manage Spark and related technologies, you may want to
check out Part 3.

We hope you have enjoyed, and learned from, reading this
guide. If you would like to know more about Unravel Data now,
you can download a free trial or contact Unravel.

http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/

Current practice for Spark troubleshooting is messy. Part
of this is due to Spark’s very popularity; it’s widely used on
platforms as varied as open source Apache Spark, on all
platforms; Cloudera’s Hadoop offerings (on-premises and
in the cloud); Amazon EMR, Azure Synapse, and Google
Dataproc; and Databricks, which runs on all three public
clouds. (Which means you have to be able to address Spark’s
interaction with all of these very different environments.)

Because Spark does so much, on so many platforms, “Spark
troubleshooting” covers a wide range of problems - jobs that
halt; pipelines that fail to deliver, so you have to find the issue;
performance that’s too slow; or using too many resources,
either in the data center (where your clusters can suck up
all available resources) or in the cloud (where resources are
always available, but your costs rise, or even skyrocket.)

Where Are the Issues – and the
Solutions?
Problems in running Spark jobs occur at the job and pipeline
levels, as well as at the cluster level, as described in Part 1 of
this three-part series: the top ten problems you encounter in
working with Spark. And there are several solutions that can
help, as we described in Part 2: five types of solutions used for
Spark troubleshooting. (You can also see our recent webinar,
Troubleshooting Apache Spark, for an overview and demo.)

Tools Problem Location Added
Capabilities

Job
Level

Pipeline
Level

Cluster
Level

Add’l sensors;
history; correlation;
AI-powered
recommendations;
AutoActions;
cloud migration

Spark UI, logs ✓ ✕ ✕ ✕

Orchestration
tools ✕ ✓ ✕ ✕

Cluster
mgmt. tools ✕ ✕ ✓ ✕

Unravel
Data ✓ ✓ ✓ ✓

Table: What each level of tool shows you – and
what’s missing

Existing tools provide incomplete, siloed information. We
created Unravel Data as a go-to DataOps platform that
includes much of the best of existing tools. In this Part 3 of the
series we’ll give examples of problems at the job, pipeline, and
cluster levels, and show how to solve them with Unravel Data.
We’ll also briefly describe how Unravel Data helps you prevent
problems, providing AI-powered, proactive recommendations.

The Unravel Data platform gathers more information than
existing tools by adding its own sensors to your stack, and by
using all previously existing metrics, traces, logs, and available
API calls. It gathers this robust information set together and
correlates pipeline information, for example, across jobs.

The types of issues that Unravel covers are, broadly
speaking: fixing bottlenecks; meeting and beating SLAs; cost
optimization; fixing failures; and addressing slowdowns,
helping you improve performance. Within each of these broad
areas, Unravel has the ability to spot hundreds of different
types of factors contributing to an issue. These contributing
factors include data skew, bad joins, load imbalance,
incorrectly sized containers, poor configuration settings, and
poorly written code, as well as a variety of other issues.

Fixing Job-Level Problems with
Unravel
Here’s an example of a Spark job or application run that’s
monitored by Unravel.

In Unravel, you first see automatic recommendations, analysis,
and insights for any given job. This allows users to quickly
understand what the problem is, why it happened, and how
to resolve it. In the example below, resolving the problem will
take about a minute.

Let’s dive into the insights for an application run, as shown below.

https://www.brighttalk.com/webcast/17674/502829/unravel-optimize-webinar-series-troubleshooting-apache-spark

You can see here that Unravel has spotted bottlenecks,
and also room for improving the performance of this app.
It has narrowed down what the particular problem is with
this application and how to resolve it. In this case, it has
recommended to double the number of executors and
reduce the memory for each executor, which will improve
performance by about 30%, meeting the SLA.

Additionally, Unravel has also spotted some bad joins which
are slowing this application down, as shown below.

In addition to helping speed this application up, Unravel is
also recommending resource settings which will lower the cost
of running this application, as shown below - reductions of
roughly 50% in executor memory and driver memory, cutting
out half the total memory cost. Again, Unravel is delivering
pinpoint recommendations. Users avoid a lengthy trial-and-
error exercise; instead, they can solve the problem in about
a minute.

Unravel can also help with jobs or applications that just didn’t
work and failed. It uses a similar approach as above to help
data engineers and operators get to the root cause of the
problem and resolve it quickly.

In this example, the job or application failed because of an
out of memory exception error. Unravel surfaces this problem
instantly and pinpoints exactly where the problem is.

For further information, and to support investigation, Unravel
provides distilled and easy-to-access logs and error messages,
so users and data engineers have all the relevant information
they need at hand.

And once data teams start using Unravel, they can do
everything with more confidence. For instance, if they try to
save money by keeping resource allocations low, but overdo
that a little bit, they’ll get an out-of-memory error. Previously,
it might have taken many hours to resolve the error, so the
team might not risk tight allocations. But fixing the error only
takes a couple of minutes with Unravel, so the data team can
cut costs effectively.

Examples of logs that Unravel provides for easy access and
error message screens follow.

Unravel strives to help users solve their problems with a click
of a button. At the same time, Unravel provides a great deal of
detail about each job and application, including displaying code
execution, displaying DAGs, showing resource usage, tracking
task execution, and more. This allows users to drill down to
whatever depth needed to understand and solve the problem.

Task stage metrics in Unravel Data

As another example, this screen shows details for task stage
information:

•	 Left-hand side: task metrics. This includes the job stage task
metrics of Spark, much like what you would see from Spark
UI. However, Unravel keeps history on this information;
stores critical log information for easy access; presents
multiple logs coherently; and ties problems to specific log
locations.

•	 Right-hand side: holistic KPIs. Information such as job start
and end time, run-time durations, I/O in KB – and whether
each job succeeded or failed.

Data Pipeline Problems
The tools people use for troubleshooting Spark jobs tend to
focus on one level of the stack or another – the networking level,
the cluster level, or the job level, for instance. None of these
approaches helps much with Spark pipelines. A pipeline is likely
to have many stages, involving many separate Spark jobs.

Here’s an example. One Spark job can handle data ingest; a
second job, transformation; a third job may send the data to
Kafka; and a final job can be reading the data from Kafka and
then putting it into a distributed store, like Amazon S3 or HDFS.

Airflow being used to create and organize a Spark pipeline.

The two most important orchestration tools are Oozie, which
tends to be used with on-premises Hadoop, and Airflow, which
is used more often in the cloud. They will help you create and
manage a pipeline; and, when the pipeline breaks down, they’ll
show you which job the problem occurred in.

But orchestration tools don’t help you drill down into that
job; that’s up to you. You have to find the specific Spark run
where the failure occurred. You have to use other tools, such as
Spark UI or logs, and look at timestamps, using your detailed
knowledge of each job to cross-correlate and, hopefully, find
the issue. As you see, just finding the problem is messy, intense,
time-consuming, expert work; fixing it is even more effort.

Oozie also gives you a big-picture view of pipelines.

Unravel, by contrast, provides pipeline-specific views that first
connect all the components - Spark, and everything else in
your modern data stack - and runs of the data pipeline together
in one place. Unravel then allows you to drill down into the
slow, failed, or inefficient job, identify the actual problem, and
fix it quickly. And it gets even better; Unravel’s AI-powered
recommendations will help you prevent a pipeline problem
from even happening in the first place.

You didn’t have to look at Spark UI, plus dig through Spark
logs, then check Oozie or Airflow. All the information is
correlated into one view - a single pane of glass.

This view shows details for several jobs. In the graphic, each
line has an instance run. The longest duration shown here is
three minutes and 1 second. If the SLA is “under two minutes,”
then the job failed to meet its SLA. (Because some jobs run
scores or hundreds of times a day, missing an SLA by more
than a minute - especially when that means a roughly 50%
overshoot against the SLA - can become a very big deal.)

Unravel then provides history and correlated information,
using all of this to deliver AI-powered recommendations. You
can also set AutoActions against a wide variety of conditions
and get cloud migration support.

Cluster Issues
Resources are allocated at the cluster level. The screenshot
shows ResourceManager (RM), which tracks resources,
schedules jobs such as Spark jobs, and so on. You can see the
virtual machines assigned to your Spark jobs, what resources
they’re using, and status - started or not started, completed or
not completed.

Apache Hadoop ResourceManager

The first problem is that there’s no way to see what actual
resources your job is consuming. Nor can you see whether
those resources are being used efficiently or not. So you can
be over-allocated, wasting resources - or running very close to
your resources limit, with the job likely to crash in the future.

Nor can you compare past to present; ResourceManager
does not have history in it. Now you can pull logs at this
level – the YARN level – to look at what was happening, but
that’s aggregated data, not the detail you’re looking for. You
also can’t dig into potential conflicts with neighbors sharing
resources in the cluster.

You can use site tools like Cloudwatch, Cloudera Manager or
Ambari. They provide a useful holistic view, at the cluster level
– total CPU consumption, disk I/O consumption, and network
I/O consumption. But, as with some of the pipeline views we
discussed above, you can’t take this down to the job level.

You may have a spike in cluster disk I/O. Was it your job that
started that, or someone else’s? Again, you’re looking at Spark
UI, you’re looking at Spark logs, hoping maybe to get a bit
lucky and figure out what the problem is. Troubleshooting
becomes a huge intellectual and practical challenge. And this is
all taking away from time making your environment better or
doing new projects that move the business forward.

It’s common for a job to be submitted, then held because the
cluster’s resources are already tied up. The bigger the job, the
more likely it will have to wait. But existing tools make it hard
to see how busy the cluster is. So later, when the job that had
to wait finishes late, no one knows why that happened.

 A cluster-level view showing vCores, specific users,
and a specific queue

By contrast, in this screenshot from Unravel, you see cluster-
level details. This job was in the data security queue, and it
was submitted on July 5th, around 7:30pm. These two rows
show vCores – overall consumption on this Hadoop cluster’s
memory. The orange line shows maximum usage, and the blue
line shows what’s available.

 At this point in time, usage (blue line) did not exceed
available resources (orange line)

You can also get more granular and look at a specific user. You
can go to the date and time that the job was launched and see
what was running at that point in time. And voilà – there were
actually enough resources available.

So, it’s not a cluster-level problem; you need to examine the
job itself. And Unravel, as we’ve described, gives you the tools
to do that. You can see that we’ve eliminated a whole class of
potential problems for this slowdown – not in hours or days,
and with no trial-and-error experimentation needed. We just
clicked around in Unravel for a few minutes.

Unravel Data:
An Ounce of Prevention
For the issues above, such as slowdowns, failures, missed SLAs
or just expensive runs, a developer would have to be looking
at YARN logs, ResourceManager logs, and Spark logs, possibly
spending hours figuring it all out. Within Unravel, though,
they would not need to jump between all those screens; they
would get all the information in one place. They can then use
Unravel’s built-in intelligence to automatically root-cause the
problem and resolve it.

Unravel Data solves the problem of Spark troubleshooting at all
three levels – at the job, pipeline, and cluster levels. It handles
the correlation problem – tying together cluster, pipeline, and
job information – for you. Then it uses that information to
give unique views at every level of your environment. Unravel
makes AI-powered recommendations to help you head off
problems; allows you to create AutoActions that execute on
triggers you define; and makes troubleshooting much easier.

Unravel solves systemic problems with Spark. For instance,
Spark tends to cause overallocation: assigning very large
amounts of resources to every run of a Spark job, to try to avoid
crashes on any run of that job over time. The biggest datasets
or most congested conditions set the tone for all runs of the job
or pipeline. But with Unravel, you can flexibly right-size the
allocation of resources.

Unravel frees up your experts to do more productive work. And
Unravel often enables newer and more junior-level people to
be as effective as an expert would have been, using the ability
to drill down, and the proactive insights and recommendations
that Unravel provides.

Unravel even feeds back into software development. Once you
find problems, you can work with the development team to
implement new best practices, heading off problems before
they appear. Unravel will then quickly tell you which new or
revised jobs are making the grade.

Another hidden virtue of Unravel is: it serves as a single
source of truth for different roles in the organization. If the
developer, or an operations person, finds a problem, then they
can use Unravel to highlight just what the issue is, and how to
fix it. And not only how to fix it this time, for this job, but to
reduce the incidence of that class of problem across the whole
organization. The same goes for business intelligence (BI)
tool users such as analysts, data scientists, everyone. Unravel
gives you a kind of X-ray of problems, so you can cooperate in
solving them.

With Unravel, you have the job history, the cluster history, and
the interaction with the environment as a whole – whether it
be on-premises, or using Databricks or native services on AWS,
Azure, or Google Cloud Platform. In most cases you don’t have
to try to remember, or discover, what tools you might have
available in a given environment. You just click around in
Unravel, largely the same way in any environment, and solve
your problem.

Between the problems you avoid, and your new-found ability
to quickly solve the problems that do arise, you can start
meeting your SLAs in a resource-efficient manner. You can
create your jobs, run them, and be a rockstar Spark developer
or operations person within your organization.

1

Unravel
sensors Metrics Traces Logs API calls

• Improved resource use ~50%
• Less troubleshooting work ~75%
• Lower costs ~50%
• Greater staff efficiency ~33%

Job-level recommendations and troubleshooting support

Correlation, ML, AI

Pipeline-level recommendations and troubleshooting support

Correlation, ML, AI

Cluster-level recommendations and troubleshooting support

Correlation, ML, AI

The Unravel advantage – on-premises and all public clouds

© Unravel. All rights reserved. Unravel and the Unravel logo are registered trademarks
of Unravel. All other trademarks are the property of their respective owners.

unraveldata.com | hello@unraveldata.com

Conclusion
In this Part 3 of the guide, we’ve given you a wide-ranging tour
of how you can use Unravel Data to troubleshoot Spark jobs –
on-premises and in the cloud, at the job, pipeline, and cluster
levels, working across all levels, efficiently, from a single
pane of glass.

In Troubleshooting Spark Applications, Part 1:
Top Ten Spark Difficulties, we described the ten biggest
challenges for troubleshooting Spark jobs across levels.
And in Spark Troubleshooting, Part 2: Five Types of
Solutions, we describe the major categories of tools, several
of which we touched on here.

This Part 3 of the guide builds on the other two to show you
how to address the problems we described, and more, with a
single tool that does the best of what single-purpose tools do,
and more – our DataOps platform, Unravel Data.

We hope you have enjoyed, and learned from, reading this
series of guides. If you would like to know more about Unravel
Data now, you can download a free trial or contact Unravel.

http://www.unraveldata.com
mailto:hello%40unraveldata.com?subject=
https://www.unraveldata.com/saas-free-trial/
https://www.unraveldata.com/contact-us/

	Unravel-Spark-Troubleshooting-Guide-Parts-1&2-29SEP21
	Unravel-Spark-Troubleshooting-Guide-Part1
	Unravel-Spark-Troubleshooting-Guide-Part2-20SEP21

	Unravel-Spark-Troubleshooting-Guide-Part3-19OCT21

